Автономное автоматическое комплексное измерительное устройство контроля и учета электроэнергии в режиме реального времени в сетях высокого напряжения

Изобретение относится к области электротехники. Устройство содержит проводящий корпус 1. Высоковольтный конденсатор 5 установлен вертикально и нижней обкладкой 6 присоединен к земле. Низковольтный конденсатор 8 низковольтного плеча емкостного делителя напряжения включен последовательно между верхней обкладкой 9 конденсатора 5 и корпусом 1 и установлен внутри корпуса 1. Выход 10 емкостного делителя через мультиплексор 11 подключен к входу аналого-цифрового преобразователя 12, выход которого соединен с входом блока обработки данных 13. Чувствительный элемент 19 - в виде нескольких витков оптоволокна, помещенных в жесткую защитную оболочку 20 из немагнитного материала, охватывающих провод 7 и образующих оптический трансформатор тока 21. Электронно-оптический блок 22 присоединен к чувствительному элементу 19. Электронно-оптический блок 22 образован источником электромагнитной волны оптического диапазона 23, выход которого присоединен к входу модулятора 24. Выход модулятора 24 присоединен к входу оптоволокна чувствительного элемента 19 и параллельно - к входу 25 фазового детектора 26, второй вход 27 которого присоединен к выходу оптоволокна чувствительного элемента 19. Выход фазового детектора 26 через мультиплексор 11 подключен к входу аналого-цифрового преобразователя 12. Технический результат заключается в расширении динамического диапазона и учета электроэнергии в режиме реального времени в сетях высокого напряжения в автономном режиме. 4 ил.

 

Изобретение относится к области электротехники, в частности к системам контроля и учета электроэнергии на высоковольтных входных и выходных порталах электрических подстанций и узлах присоединений высоковольтных линий электропередачи.

Известен преобразователь измерительный высоковольтный оптический напряжения и тока (А.Л.Гуртовцев. Оптические трансформаторы и преобразователи тока. Принципы работы, устройства, характеристики. Новости электротехники, №5 (60), 2010 г.), содержащий преобразователь измерительный оптический тока и преобразователь измерительный оптический напряжения, установленные на изоляторе у фазного провода линии передачи электроэнергии высокого напряжения, присоединенные каждый к оптоволоконной линии передачи, которые соединяют преобразователи с оптическими устройствами измерения поляризационных характеристик электромагнитных волн сигналов в оптоволоконной линии, пропорциональных силе тока в проводе и фазному напряжению в соответствии с эффектом Фарадея (законом Верде) и эффектом Поккельса.

Недостаток известного технического решения заключается в ограниченной области возможного размещения измерительного устройства, а именно только вблизи пунктов, снабженных вторичными источниками питания электронных блоков.

Наиболее близким по технической сущности к предлагаемому автономному автоматическому комплексному измерительному устройству контроля и учета электроэнергии в режиме реального времени в сетях высокого напряжения (патент на изобретение №2224260, МКИ 7 G01R 11/48, опубликован 20.02.2004 г.) является устройство, содержащее автономное автоматическое комплексное измерительное устройство контроля и учета электроэнергии в режиме реального времени в сетях высокого напряжения, содержащее проводящий корпус, который выполнен в виде цилиндра с плоскими торцевыми стенками, который установлен вертикально на диэлектрической подставке, размещенной на высоковольтном конденсаторе высоковольтного плеча емкостного делителя напряжения, который установлен вертикально и нижней обкладкой присоединен к земле, причем проводящий корпус включен последовательно в рассечку высоковольтного силового провода, низковольтный конденсатор низковольтного плеча емкостного делителя напряжения, включенный последовательно между верхней обкладкой высоковольтного конденсатора и проводящим корпусом и размещенный внутри проводящего корпуса, а выход емкостного делителя через мультиплексор подключен к входу аналого-цифрового преобразователя, выход аналого-цифрового преобразователя соединен с входом блока обработки данных, измерительный низковольтный трансформатор тока, установленный на внешней стороне проводящего корпуса и укрепленный на ней через изолирующую прокладку, первичной обмоткой измерительного низковольтного трансформатора тока является высоковольтный силовой провод, а выводы вторичной обмотки измерительного низковольтного трансформатора тока через мультиплексор подключены к входу аналого-цифрового преобразователя, мультиплексор, аналого-цифровой преобразователь, блок обработки данных размещены внутри проводящего корпуса, радиопередатчик, размещенный внутри проводящего корпуса, вход которого соединен с выходом блока обработки данных, а выход - с антенной, блок питания, который размещен внутри корпуса и вход которого подключен к вторичной обмотке электромагнитно связанного с фазным проводом низковольтного электромагнитного трансформатора тока, установленного на внешней стороне верхней плоской торцевой стенки проводящего корпуса, укрепленного на ней через вторую изолирующую прокладку внутри выравнивателя поля.

Недостатком этого технического решения является узкий динамический диапазон измеряемых токов в фазном проводе, ограниченный допустимыми измеряемыми значениями силы тока электромагнитного трансформатора тока.

Технической задачей предлагаемого изобретения является расширение динамического диапазона измеряемого тока автоматического комплексного измерительного устройства контроля и учета электроэнергии в режиме реального времени в сетях высокого напряжения в автономном режиме.

Решение этой задачи достигается тем, что известное автономное автоматическое комплексное измерительное устройство контроля и учета электроэнергии в режиме реального времени в сетях высокого напряжения, содержащее проводящий корпус, который выполнен в виде цилиндра с плоскими торцевыми стенками и установлен вертикально на диэлектрической подставке, размещенной на высоковольтном конденсаторе высоковольтного плеча емкостного делителя напряжения, который установлен вертикально и нижней обкладкой присоединен к земле, причем проводящий корпус включен последовательно в рассечку фазного провода, низковольтный конденсатор низковольтного плеча емкостного делителя напряжения, включенный последовательно между верхней обкладкой высоковольтного конденсатора и проводящим корпусом и установленный внутри проводящего корпуса, а выход емкостного делителя соединен с мультиплексором, подключенным к входу аналого-цифрового преобразователя, выход которого соединен с входом блока обработки данных, мультиплексор, аналого-цифровой преобразователь, блок обработки данных установлены внутри проводящего корпуса, радиопередатчик, установленный внутри проводящего корпуса, вход которого соединен с выходом блока обработки данных, а выход - с антенной, блок питания, который помещен внутрь корпуса и вход которого подключен к вторичной обмотке электромагнитно связанного с фазным проводом низковольтного электромагнитного трансформатора тока, установленного на внешней стороне верхней плоской торцевой стенки проводящего корпуса, укрепленного на ней с помощью второй изолирующей прокладки, снабжено чувствительным элементом в виде нескольких витков оптоволокна, помещенных в жесткую защитную оболочку из немагнитного материала, охватывающих фазный провод и образующих токовую головку для оптического трансформатора тока, и электронно-оптическим блоком, который присоединен к чувствительному элементу, причем электронно-оптический блок образован источником электромагнитной волны оптического диапазона, выход которого присоединен к входу модулятора, выход которого присоединен к входу оптоволокна чувствительного элемента и параллельно - к входу фазового детектора, второй вход которого присоединен к выходу оптоволокна чувствительного элемента, выход фазового детектора соединен с мультиплексором, подключенным к входу аналого-цифрового преобразователя.

Сущность изобретения поясняется чертежами, где на фиг.1 показано автономное автоматическое комплексное измерительное устройство контроля и учета электроэнергии в режиме реального времени в сетях высокого напряжения, на фиг.2 схематично показано размещение узлов устройства внутри корпуса, на фиг.3 представлен чувствительный элемент, а на фиг.4 приведена функциональная схема измерительного устройства.

Автономное автоматическое комплексное измерительное устройство контроля и учета электроэнергии в режиме реального времени в сетях высокого напряжения содержит проводящий корпус 1, который выполнен в виде цилиндра с плоскими торцевыми стенками: нижней - 2 и верхней - 3 и установлен вертикально на диэлектрической подставке 4, размещенной на высоковольтном конденсаторе 5 высоковольтного плеча емкостного делителя напряжения. Высоковольтный конденсатор 5 установлен вертикально и нижней обкладкой 6 присоединен к земле. Проводящий корпус 1 включен последовательно в рассечку фазного провода 7. Низковольтный конденсатор 8 низковольтного плеча емкостного делителя напряжения включен последовательно между верхней обкладкой 9 высоковольтного конденсатора 5 и проводящим корпусом 1 и установлен внутри проводящего корпуса 1. Выход 10 емкостного делителя через мультиплексор 11 подключен к входу аналого-цифрового преобразователя 12, выход которого соединен с входом блока обработки данных 13. Радиопередатчик 14 установлен внутри проводящего корпуса 1, вход радиопередатчика 14 соединен с выходом блока обработки данных 13, а выход - с антенной 15. Блок питания 16 помещен внутрь корпуса 1. Вход блока питания 16 подключен к вторичной обмотке электромагнитно связанного с фазным проводом 7 низковольтного электромагнитного трансформатора тока 17, установленного на внешней стороне верхней плоской торцевой стенки 3 проводящего корпуса 1, укрепленного на ней через вторую изолирующую прокладку 18. Чувствительный элемент 19 - в виде нескольких витков оптоволокна, помещенных в жесткую защитную оболочку 20 из немагнитного материала, охватывающих фазный провод 7 и образующих оптический трансформатор тока 21. Электронно-оптический блок 22 присоединен к чувствительному элементу 19. Электронно-оптический блок 22 образован источником электромагнитной волны оптического диапазона 23, выход которого присоединен к входу модулятора 24. Выход модулятора 24 присоединен к входу оптоволокна чувствительного элемента 19 и параллельно - к входу 25 фазового детектора 26, второй вход 27 которого присоединен к выходу оптоволокна чувствительного элемента 19. Выход фазового детектора 26 через мультиплексор 11 подключен к входу аналого-цифрового преобразователя 12.

Автономное автоматическое комплексное измерительное устройство контроля и учета электроэнергии в режиме реального времени в сетях высокого напряжения работает следующим образом.

Информационный сигнал напряжения уровня от 0 до 5 В относительно потенциала корпуса 1, то есть высокого потенциала, пропорциональный высоковольтному фазному напряжению фазного провода 7 относительно земли, формируется емкостным делителем напряжения, образованным высоковольтными конденсатором 5 высоковольтного плеча емкостного делителя напряжения и низковольтным конденсатором 8 низковольтного плеча емкостного делителя напряжения. Низковольтный конденсатор 8 включен между верхней обкладкой 9 высоковольтного конденсатора 5 и проводящим корпусом 1. С низковольтного конденсатора 8 низковольтного плеча емкостного делителя напряжения информационный аналоговый сигнал через мультиплексор 11, который обеспечивает временное разделение каналов измерения силы тока и фазного напряжения, поступает на вход аналого-цифрового преобразователя 12, выход которого соединен с входом блока обработки данных 13.

Информационный сигнал с напряжением уровня от 0 до 5 В, пропорциональный силе тока в фазном проводе 7, снимается с выхода фазового детектора 25. Преобразование силы тока в фазном проводе 7 в напряжение уровня от 0 до 5 В осуществляется в чувствительном элементе 19 за счет эффекта Фарадея вращения плоскости поляризации электромагнитной волны оптического диапазона в оптоволокне пропорционально напряженности продольного магнитного поля. Исходная плоская электромагнитная волна оптического диапазона формируется источником 23 электромагнитной волны оптического диапазона. С выхода источника 23 электромагнитной волны оптического диапазона сигнал поступает на вход модулятора 24. С выхода модулятора 24 часть сигнала поступает на вход чувствительного элемента 19 и распространяется вдоль его оптоволокна до выхода чувствительного элемента 19. Другая часть сигнала с выхода модулятора 24 поступает на первый вход 25 фазового детектора 26, на второй вход 27 которого поступает волна с выхода чувствительного элемента 19. При распространении электромагнитной волны вдоль оптоволокна чувствительного элемента 19 за счет эффекта Фарадея плоскость поляризации волны изменяется пропорционально силе тока, то есть напряженности магнитного поля, образующего кольцевые силовые линии в поперечном сечении фазного провода 7. В соответствии с законом Верде угол поворота плоскости поляризации: Θ=V·l·Н, где Θ - угол поворота плоскости поляризации волны в оптоволоконной линии, V - коэффициент пропорциональности (Верде), l - длина оптоволокна чувствительного элемента 19, определяющая его чувствительность, Н - напряженность магнитного поля, связанная с током в токопроводе 4 законом полного тока. На выходе фазового детектора 26 возникает аналоговый сигнал, пропорциональный углу поворота плоскости поляризации электромагнитной волны, то есть силе тока в фазном проводе 7. С выхода фазового детектора 26 сигнал через мультиплексор 11 поступает на вход аналого-цифрового преобразователя 12, с выхода которого оцифрованный сигнал поступает на вход блока обработки данных 13.

Итак, чувствительный элемент 19 в виде нескольких витков оптоволокна, помещенных в жесткую защитную оболочку 20, обеспечивающую механическую прочность конструкции чувствительного элемента 19, из немагнитного материала, что исключает искажение магнитного поля фазного провода 7, образует оптический трансформатор тока 21, обладающий широким динамическим диапазоном измеряемых токов.

С выхода блока обработки данных 13 информационный сигнал в виде цифровой последовательности, соответствующей спектральному составу фазного тока, фазного напряжения и активной мощности основной гармоники, поступает на вход радиопередатчика 14. Выход радиопередатчика 14 присоединен к антенне 15, которая формирует радиоканал приемо-передачи данных между измерительным устройством и диспетчерским пунктом для визуализации и хранения информации в соответствии с требованиями нормативной документации.

Радиопередатчик 14 выполнен, например в виде цифрового радиомодема в стандарте Ehernet типа Ultima3 ER. Передача информационных данных по радиоканалу помимо простого способа обеспечения высоковольтной развязки приемной стороны одновременно повышает помехозащищенность передаваемой информации, что реализуется применением сверхвысокочастотной несущей частоты, равной ~2450 МГц, в сочетании с широкополосной модуляцией несущей частоты полезным сигналом в стандарте 802.11 b. Применение радиопередатчика 14 канала передачи данных обеспечивает дальность передачи информации до 3 км при потребляемой мощности в пределах 5 Вт. Выполнение антенны 15 из диэлектрика исключает источники коронного разряда.

Блок питания 16 обеспечивает электропитание мультиплексора 11, аналого-цифрового преобразователя 12, блока обработки данных 13, радиопередатчика 14, электронно-оптического блока 22. Энергия на вход блока питания 16 снимается с фазного провода 7 и поступает через вторичную обмотку электромагнитно связанного с фазным проводом 7 низковольтного электромагнитного трансформатора тока 17. Используя вторичные обмотки в стандартном низковольтном трансформаторе тока, например, типа ТШЛП-10-1/3000А, обеспечивается уровень мощности блока питания 16 около 100 Вт.

Выполнение проводящего корпуса 1 в виде цилиндра с плоскими торцевыми стенками: нижней - 2 и верхней - 3 при включении его в рассечку фазного провода 7 обеспечивает его функционирование в режиме клетки Фарадея, которая работает как электромагнитный экран от помеховых полей фазного провода 7 в отношении установленных в ней блока питания 16, мультиплексора 11, аналого-цифрового преобразователя 12, блока обработки данных 13, радиопередатчика 14, электронно-оптического блока 22. Вертикальная установка корпуса 1 на высоковольтном конденсаторе 5 определена рациональным вариантом ее крепления. Диэлектрическая подставка 4 необходима для выполнения гальванической развязки плеч делителя напряжения, а вторая изолирующая прокладка 18 обеспечивает защиту от электрического пробоя обмотки низковольтного электромагнитного трансформатора тока 17, установленного на внешней стороне верхней плоской торцевой стенки 3 проводящего корпуса 1.

Применение изобретения обеспечивает расширение динамического диапазона измеряемых токов в фазном проводе до значений кратности в 10 и более раз относительно номинальных значений. При этом обеспечивается автономный режим работы при условии произвольной установки устройства относительно диспетчерских пунктов cбора данных.

Автономное автоматическое комплексное измерительное устройство контроля и учета электроэнергии в режиме реального времени в сетях высокого напряжения, содержащее проводящий корпус, который выполнен в виде цилиндра с плоскими торцевыми стенками и установлен вертикально на диэлектрической подставке, размещенной на высоковольтном конденсаторе высоковольтного плеча емкостного делителя напряжения, который установлен вертикально и нижней обкладкой присоединен к земле, причем проводящий корпус включен последовательно в рассечку фазного провода, низковольтный конденсатор низковольтного плеча емкостного делителя напряжения, включенный последовательно между верхней обкладкой высоковольтного конденсатора и проводящим корпусом и установленный внутри проводящего корпуса, а выход емкостного делителя соединен с мультиплексором, подключенным к входу аналого-цифровой преобразователя, выход которого соединен с входом блока обработки данных, мультиплексор, аналого-цифровой преобразователь, блок обработки данных установлены внутри проводящего корпуса, радиопередатчик, установленный внутри проводящего корпуса, вход которого соединен с выходом блока обработки данных, а выход с антенной, блок питания, который помещен внутрь корпуса и вход которого подключен к вторичной обмотке электромагнитно связанного с фазным проводом низковольтного электромагнитного трансформатора тока, установленного на внешней стороне верхней плоской торцевой стенки проводящего корпуса, укрепленного на ней с помощью второй изолирующей прокладки, отличающееся тем, что снабжено чувствительным элементом в виде нескольких витков оптоволокна, помещенных в жесткую защитную оболочку из немагнитного материала, охватывающих фазный провод и образующих токовую головку для оптического трансформатора тока, и электронно-оптическим блоком, который присоединен к чувствительному элементу, причем электронно-оптический блок образован источником электромагнитной волны оптического диапазона, выход которого присоединен к входу модулятора, выход которого присоединен к входу оптоволокна чувствительного элемента и параллельно к входу фазового детектора, второй вход которого присоединен к выходу оптоволокна чувствительного элемента, выход фазового детектора соединен с мультиплексором, подключенным к входу аналого-цифрового преобразователя.



 

Похожие патенты:

Изобретение относится к волоконно-оптическим датчикам тока и работает на принципе эффекта Фарадея. .

Изобретение относится к области волоконно-оптических измерительных устройств и может быть использовано в интерференционных волоконно-оптических датчиках тока. .

Изобретение относится к области волоконно-оптической сенсорики, в частности к сенсорной головке и датчику тока или магнитного поля. .

Изобретение относится к области электрических измерений и может быть использовано в электроэнергетике, в измерительной технике высоких напряжений, в области релейной защиты и автоматике.

Изобретение относится к измерительной технике и может быть использовано для измерения тока в электрических цепях. .

Изобретение относится к области электрических измерений и может быть использовано в измерительной технике высоких напряжений, в области релейной защиты и автоматики.

Изобретение относится к измерительной технике, в частности к приборам для измерения силы тока, и предназначено для измерения однократного импульса тока с длительностью, лежащей в наносекундном диапазоне длительностей, в мощных электрофизических установках типа линейных импульсных ускорителей электронов.

Изобретение относится к электротехнике, к подстанциям преобразования переменного тока в постоянный и постоянного тока в переменный ток высокого напряжения

Изобретение относится к волоконной оптике, в частности к волоконно-оптическим датчикам тока и магнитного поля. Способ измерения величины эл. тока и магн. поля включает формирование двух ортогонально поляризованных световых волн, прохождение их через оптическое магниточувствительное волокно со встроенным линейным двулучепреломлением, помещенное в измеряемое магн. поле или магн. поле измеряемого эл. тока, отражение, прохождение в обратном направлении и определение эл. тока и напряженности магн. поля по величине интенсивности проинтерферировавших отраженных световых волн. Перед входом в магниточувствительное волокно поляризацию каждой волны преобразуют в эллиптическую, перед отражением осуществляют преобразование поляризации каждой волны в циркулярную, при этом азимуты ортогональных эллиптических поляризаций волн, входящих в магниточувствительное волокно до и после отражения, либо совпадают с азимутами главных осей линейного двулучепреломления, либо ортогональны им, а эллиптичность поляризаций совпадает с собственной эллиптичностью волокна. Волоконно-оптическое устройство для измерения величины эл. тока и магн. поля, включающее источник оптического излучения, соединенный с первым входом направленного ответвителя, второй вход которого соединен с фотодетектором, а один из выходов подключен к линейному поляризатору, который через сварное соединение подключен к последовательно соединенным оптическому модулятору, линии задержки, первой фазовой пластинке, чувствительному элементу, выполненному из магниточувствительного волокна со встроенным линейным двулучепреломлением с шагом спиральной структуры Ltw и длиной биений встроенного линейного двулучепреломления Lb, и отражателю излучения. Между отражателем излучения и магниточувствительным волокном размещена вторая фазовая пластинка, при этом первая и вторая фазовые пластинки выполнены вносящими разности фаз соответственно (φ1=arctg(2Lb/Ltw) и φ2=π/2-arctg(2Lb/Ltw) между ортогональными линейно поляризованными компонентами светового излучения. Техническим результатом изобретения является увеличение динамического диапазона волоконно-оптического датчика. 3 н. и 6 з.п. ф-лы, 6 ил.

Изобретение относится к измерительной технике, в частности к датчикам тока. Устройство измерения электрического тока содержит схему обработки сигналов, которая включает в себя оптоволокно для датчика, блок разделения поляризации, Фарадеевское вращающее устройство, источник света и фотоэлектрический преобразующий элемент. При этом оптоволокно для датчика предусмотрено по периферии электрического проводника, через который протекает измеряемый электрический ток, и имеет один конец, на который падает линейно поляризованный свет, и другой конец, от которого падающий линейно поляризованный свет отражается. Блок разделения поляризации предусмотрен на одном конце оптоволокна для датчика, Фарадеевское вращающее устройство расположено между одним концом оптоволокна для датчика и блоком разделения поляризации. Фарадеевский угол вращения Фарадеевского вращающего устройства при магнитном насыщении установлен как 22,5°+° при температуре 23°С так, что диапазон колебаний относительной ошибки значения измеряемого электрического тока, выводимого от схемы обработки сигналов, установлен в пределах ±0,5%, причем температурный диапазон, в котором диапазон колебаний установлен в пределах ±0,5%, составляет 100°С. Технический результат - повышение точности измерений. 8 з.п. ф-лы, 23 ил., 5 табл.

Изобретение относится к кожуху электрического проводника, оснащённому датчиками тока, который может найти применение в электрических устройствах. Технический результат заключается в создании кожуха, позволяющего легко устанавливать или заменять датчики без нарушения циркуляции токов в кожухе и герметичности кожуха. Кожух окружает линейный проводник и содержит, по меньшей мере, одну внутреннюю камеру, в которой расположен, по меньшей мере, один оптоволоконный датчик или датчик с трансформатором тока, намотанный вокруг кожуха и позволяющий измерять значение тока. Камера является по существу закрытой и содержит только отверстия маленького размера на своей наружной стороне, через которые можно завести датчики или вынуть их для замены и через которые датчики соединяются с электрическим устройством. Кожух снабжен желобками, выполненными на его поверхности, или отдельными трубками для направления датчиков и образования витков датчиков. 2 н. и 6 з.п. ф-лы, 6 ил.

Изобретение относится к электроизмерительной технике. Волоконно-оптический датчик тока, содержащий: измерительное волокно (5), на которое воздействует магнитное поле измеряемого тока, при этом указанное измерительное волокно (5) образует виток в плоскости датчика и имеет постоянную Верде V, устройство (4) запаздывания, расположенное между сохраняющим линейную поляризацию волокном (2) и измерительным волокном (5), для преобразования света между линейной поляризацией и эллиптической поляризацией, при этом главная ось указанного сохраняющего поляризацию (сп) волокна (2) непосредственно перед указанным устройством запаздывания поворачивается относительно перпендикуляра к указанной плоскости датчика на угол β и указанное устройство (4) запаздывания вносит дифференциальный фазовый сдвиг ρ=π/2+ε между световыми волнами, поляризованными вдоль своих главных осей, где ε - дополнительный ненулевой фазовый сдвиг, блок (1) управления, формирующий сигнал, пропорциональный фазовому сдвигу Δφ. Технический результат заключается в уменьшении влияния температуры на измерения тока. 22 з.п. ф-лы, 12 ил.

Группа изобретений относится к метрологии, в частности к средствам измерения напряжения. Датчик высокого напряжения содержит изолятор, проходящий вдоль осевого направления между первой и второй контактными точками, множество проводящих электродов, расположенных в упомянутом изоляторе, причем упомянутые электроды взаимно разделены упомянутым изолирующим материалом и связаны друг с другом емкостной связью. При этом часть упомянутых электродов перекрывается с другими электродами по оси, причем упомянутые электроды расположены так, чтобы создавать в упомянутой полости датчика электрическое поле, имеющее среднюю напряженность поля, большую, чем упомянутое напряжение, поделенное на расстояние между упомянутой первой и упомянутой второй контактными точками. Электроды формируют емкостный делитель и расположены асимметрично относительно плоскости отсчета и заделаны в материал изолятора, обладающий разными диэлектрическими постоянными по обеим сторонам плоскости отсчета. Датчик также содержит электрооптическое устройство с кристаллом с зависящим от поля двойным лучепреломлением или поляризованным волноводом, демонстрирующими эффект Поккельса, или пьезоэлектрическое устройство и волновод, длина волновода которого зависит от поля. Технический результат - повышение компактности. 5 н. и 54 з.п. ф-лы, 13 ил.

Изобретение относится к поляризационным приборам для измерения силы тока, в которых используется эффект поворота плоскости поляризации линейно поляризованного света веществом, находящимся в продольном магнитном поле (эффект Фарадея). Заявленный оптический измеритель переменного тока на базе ячейки Фарадея для высоковольтных линий электропередач содержит источник света и установленные последовательно по ходу лучей многомодовое оптическое волокно, коллиматор, первый поляризатор, активный элемент ячейки Фарадея, выполненный из прозрачного вещества, второй поляризатор, плоскость пропускания которого составляет угол ±45° с плоскостью пропускания первого поляризатора, при этом фотоприемное устройство выполнено в виде собирающей линзы, второе многомодовое оптическое волокно, фотоприемник, линейный усилитель сигнала фотоприемника, блок преобразования сигналов, при этом активный элемент ячейки Фарадея выполнен из стекла с высоким значением постоянной Вердэ в виде цилиндра и установлен внутри соленоида, образованного фрагментом проводника высоковольтной линии электропередач, а один торец цилиндра перпендикулярен его образующей, полирован и на его поверхность нанесено зеркальное покрытие, другой торец цилиндра содержит входную и выходную полированные поверхности, выполненные наклонными, образующие между собой ребро, пересекающее ось цилиндра, и составляющие с плоскостью торца цилиндра углы где D - диаметр цилиндра, а - длина цилиндра. Технический результат - повышение точности измерения величины и расширение диапазона измеряемого переменного тока. 3 з.п. ф-лы, 2 ил.

Изобретение относится к области волоконной оптики и может быть использовано при создании волоконно-оптических интерферометрических датчиков для регистрации фазовых сигналов (вибраций, акустических воздействий). Изобретение решает задачу создания волоконно-оптического интерферометрического устройства для регистрации различных фазовых сигналов (вибраций, акустических воздействий), которое позволяет избавиться от искажений полезного сигнала и уменьшить оптические потери при одновременном упрощении конструкции. Волоконно-оптическое интерферометрическое устройство для регистрации фазовых сигналов, включающее оптически соединенные источник когерентного оптического излучения, фазовый модулятор, устройство для распределения оптической мощности, чувствительную часть, включающую, по крайней мере, один чувствительный элемент, представляющий собой отрезок чувствительного оптического волокна, находящийся между двумя волоконными брэгговскими решетками (ВБР) одной резонансной длины волны, расположенными на заданном расстоянии, и фотоприемное устройство со схемой демодуляции, при этом вход фазового модулятора соединен с источником когерентного оптического излучения, а его выход соединен с первым портом устройства для распределения оптической мощности, второй порт которого соединен с чувствительной частью, а третий порт устройства для распределения оптической мощности соединен с входом фотоприемного устройства, а длина чувствительного элемента (Lчэ) и длительность лазерного импульса источника когерентного оптического излучения (tимп) связаны соотношением: ,где с - скорость света, n - показатель преломления оптического волокна чувствительного элемента, tимп - длительность лазерного импульса, Lчэ - длина чувствительного элемента. 4 ил.

Изобретение относится к оптоволоконным датчикам тока. Заявленный оптоволоконный датчик тока со SPUN волокном с высоким двулучепреломлением содержит источник света, который генерирует световое излучение в диапазоне длин волн, первый линейный поляризатор, принимающий световое излучение от источника света и формирующий поляризованный свет. При этом фазовая пластинка принимает свет от первого линейного поляризатора и имеет фазовую задержку ρ=n⋅90°+ε, где n - целое число. Кроме того, датчик тока содержит измерительное spun волокно, намотанное N раз с образованием контура, размещаемого вокруг носителя тока, spun волокно имеет постоянную Верде V. Также устройство содержит детекторный узел, выполненный с возможностью определения фазового сдвига Δφ между двумя поляризованными модами света, возвращающегося из указанного измерительного волокна, и с возможностью формирования сигнала, указывающего на указанный ток. Технический результат – улучшение температурной компенсации и двойного лучепреломления оптоволоконного датчика. 40 з.п. ф-лы, 15 ил.

Измеритель содержит источник света и установленные последовательно многомодовое оптическое волокно, первый поляризатор, активный элемент ячейки Фарадея, второй поляризатор, плоскость пропускания которого составляет угол ±45° с плоскостью поляризации первого, собирающую линзу, второе многомодовое оптическое волокно и фотоприемник, а также линейный усилитель сигнала фотоприемника, блок преобразования сигналов и индикатор результатов измерения. Активный элемент ячейки Фарадея выполнен в виде четырехугольной призмы высотой h, одна пара боковых граней которой имеет ширину не менее диаметра D коллимированного пучка света, а противоположные боковые грани имеют ширину не менее 3D, первое основание призмы, на которое падает свет, полировано, и на его поверхности в центре нанесено зеркальное покрытие в виде прямоугольной полоски шириной D, другое основание призмы разделено на три равные прямоугольные зоны, по обе стороны от центральной прямоугольной зоны содержит две полированные поверхности с зеркальными покрытиями, составляющие с плоскостью центрально зоны углы γ = arctg(0,5D/h). Технический результат – уменьшение искажений состояния поляризации света, повышение чувствительности и точности измерений. 3 з.п. ф-лы, 5 ил.
Наверх