Способ получения на стеклянном изделии токопроводящего покрытия из двуокиси олова

Изобретение относится к области разработки и эксплуатации электрообогреваемых стеклоизделий, представляющих собой прозрачные элементы кабины различных видов транспортных средств. Способ получения на стеклянном изделии токопроводящего покрытия из двуокиси олова осуществляют путем нагрева изделия, формирования покрытия распылением, измерения удельного сопротивления в контрольных точках и разбраковки. После разбраковки осуществляют модификацию поверхности отбракованных изделий ионной бомбардировкой покрытия из двуокиси олова ионами аргона при средней энергии 1500-1700 эВ и давлении (2-3)·10-2 Па. Технический результат изобретения - снижение трудоемкости и себестоимости изготовления изделий. 5 пр.

 

Изобретение относится к области разработки и эксплуатации электрообогреваемых стеклоизделий, представляющих собой прозрачные элементы кабины различных видов транспортных средств.

В настоящее время транспортные средства, предназначенные для эксплуатации на открытом воздухе, снабжают электрообогреваемым остеклением, выполненным с прозрачным токопроводящим покрытием. Это покрытие изготавливают, в частности, путем нанесения на поверхность стекла пленки на основе двуокиси олова, имеющей заданное удельное сопротивление.

Известен способ получения на стеклянном изделии токопроводящего покрытия из двуокиси олова путем нагрева изделия, формирования покрытия распылением, измерения удельного сопротивления в контрольных точках, разбраковки, погружения отбракованных изделий в электролит состава в мас.%: разбавленная соляная кислота 94-97, гидрохинон 3-6 со скоростью 0,8-3 см/мин при переменном напряжении 20-50 В и плотности тока 0,3-0,8 А/дм, и повторного нанесения токопроводящего покрытия по авторскому свидетельству СССР №1564951, МПК7 C03C 17/23, опубл. 20.06.2005.

Недостатком известного способа является загрязнение воздушной среды токсическими и коррозионно-активными веществами, обусловленное выделением в воздух паров соляной кислоты.

Наиболее близким к предлагаемому способу является способ получения на стеклянном изделии токопроводящего покрытия из двуокиси олова путем нагрева изделия, формирования покрытия распылением, измерения удельного сопротивления в контрольных точках, погружения отбракованных изделий в раствор электролита и повторного нанесения покрытия.

При этом отбракованные изделия погружают в электролит следующего состава в мас.%: вода 88-92, хлорид натрия 8-12, при переменном напряжении 15-20 В по авторскому свидетельству СССР №1700906, МПК7 C03C 17/23, опубл. 20.06.2005.

Недостатком известного способа является необходимость полного удаления отбракованного токопроводящего покрытия из двуокиси олова с поверхности изделия, а затем нового нанесения его на поверхность изделия. Это значительно повышает трудоемкость, а следовательно себестоимость изготовления изделия. Кроме этого, вероятность получения изделий с заданным удельным сопротивлением равна ~50-60%, что обусловлено сложностью контроля процесса формования покрытия распылением.

Задачей изобретения является снижение трудоемкости и себестоимости изготовления изделий.

Для достижения задачи изобретения предложен способ получения на стеклянном изделии токопроводящего покрытия из двуокиси олова путем нагрева изделия, формирования покрытия распылением, измерения удельного сопротивления в контрольных точках и разбраковки, отличающийся тем, что после разбраковки осуществляют модификацию поверхности отбракованных изделий ионной бомбардировкой покрытия из двуокиси олова при средней энергии ионов, например, аргона 1500-1700 эВ и давлении 2-3·10-2 Па.

Авторы установили, что при ионной бомбардировке покрытия из двуокиси олова при средней энергии ионов, например, аргона 1500-1700 эВ и давлении 2-3·10-2 Па происходит уменьшение толщины покрытия, а следовательно, увеличение удельного сопротивления. Использование ионного источника, в частности, с анодным слоем при высоковольтном режиме (с коллимированным пучком) позволяет рассчитать количество воздействий коллимированного пучка ионов, например, аргона на поверхность покрытия из двуокиси олова, исходя из значений удельного сопротивления отбракованного изделия и заданного для годного изделия. При разнице значений удельного сопротивления 4 и менее Ом/□ используется средняя энергия ионов, например, аргона 1500 эВ, а при разнице значений 6 и более Ом/□ - 1700 эВ.

Способ осуществляют в следующей последовательности.

На заготовки изделий электрообогреваемого остекления наносят распылением водоспиртовый раствор четыреххлористого олова: заготовки моют, нагревают в печи электросопротивления до 680°C, затем в течение 1-2 с транспортируют в распылительную камеру транспортером, где на них в течение 2-8 с пневматическим распылением, управляемым автоматически и заранее отрегулированным, распыляют раствор SnCl4·5H2O в этаноле, после чего заготовки охлаждают в течение 3-5 мин, интенсивно обдувая их воздухом. Далее каждую полученную заготовку с покрытием накладывают на шаблон, на котором заранее отмечены контрольные точки, в которых следует измерить удельное сопротивление поверхности заготовки для изделия данного типоразмера. В отмеченных точках измеряют удельное сопротивление поверхности заготовки и сравнивают его с заданной технической документацией на изделие. Затем изделия, не соответствующие требованиям по удельному сопротивлению, отбраковывают и отправляют на последующую операцию модификации поверхности покрытия. Отбракованную заготовку устанавливают в вакуумную камеру с возможностью вращения заготовки вокруг неподвижно установленного ионного источника с анодным слоем, создающим при высоковольтном режиме коллимированный пучок ионов, например, аргона. Далее камеру вакуумируют до давления 2-3·10-2 Па, напускают в камеру аргон и включают ионный источник, при этом заготовка вращается вокруг ионного источника. Средняя энергия ионов аргона может быть от 1500 до 1700 эВ. Количество оборотов изделия вокруг ионного источника рассчитывается исходя из заранее определенных значений увеличения удельного сопротивления за один проход над источником.

Пример 1. Изготовление изделий осуществляют на партии стеклозаготовок, вырезанных из стекла толщиной 6 мм промышленного состава ГОСТ III-2001. Нанесение покрытия осуществляют, как описано выше, после нанесения получают 40% годных изделий и 60% отбракованных по величине удельного сопротивления на поверхности стеклозаготовок: задано 40 Ом/□, получено 30. Далее осуществляют ионную бомбардировку покрытия, как описано выше. При этом средняя энергия ионов аргона равнялась 1700 эВ. Ранее было установлено, что при энергии ионов аргона 1700 эВ за один оборот изделия вокруг источника удельное сопротивление возрастает на 0,4 Ом. Таким образом, чтобы получить заданное удельное сопротивление было проведено 25 оборотов изделия вокруг ионного источника.

Примеры 2-5. Изготовление изделий осуществляют, как в примере 1.

В примере 2 удельное сопротивление задано 40 Ом/□, получено 36 Ом/□. Средняя энергия ионов аргона 1500 эВ. При энергии ионов аргона 1500 эВ за один оборот изделия вокруг источника удельное сопротивление возрастает на 0,2 Ом. Было проведено 20 оборотов вокруг ионного источника.

В примере 3 удельное сопротивление задано 40 Ом/□, получено 38 Ом/□. Средняя энергия ионов аргона 1500 эВ. Возрастание удельного сопротивления, как и в примере 2. Было проведено 10 оборотов вокруг ионного источника.

В примере 4 удельное сопротивление задано 40 Ом/□, получено 34 Ом/□. Средняя энергия ионов аргона 1700 эВ. Возрастание удельного сопротивления, как и в примере 1. Было проведено 15 оборотов вокруг ионного источника.

В примере 5 удельное сопротивление задано 40 Ом/□, получено 35 Ом/□. Средняя энергия ионов аргона 1600 эВ. Возрастание удельного сопротивления при средней энергии ионов аргона 1600 эВ за один оборот составляет 0,3 Ом/□. Было проведено 17 оборотов вокруг ионного источника.

Полученные по примерам 1-5 изделия имеют заданную для них величину удельного сопротивления. Использование предложенного способа позволяет исключить технологические операции снятия покрытий на основе двуокиси олова и повторного нанесения этого покрытия на поверхность отбракованных изделий. Таким образом, трудоемкость и себестоимость изготовления изделий значительно снижаются, примерно в 2 раза.

Источники информации

1. Аналог - авторское свидетельство СССР №1564951, МПК7 C03C 17/23, опубл. 20.06.2005.

2. Прототип - авторское свидетельство СССР №1700906, МПК7 C03C 17/23, опубл. 20.06.2005.

Способ получения на стеклянном изделии токопроводящего покрытия из двуокиси олова путем нагрева изделия, формирования покрытия распылением, измерения удельного сопротивления в контрольных точках и разбраковки, отличающийся тем, что после разбраковки осуществляют модификацию поверхности отбракованных изделий ионной бомбардировкой покрытия из двуокиси олова при средней энергии ионов аргона 1500-1700 эВ и давлении (2-3)·10-2 Па.



 

Похожие патенты:

Изобретение относится к подложке из стекла или керамики, поверхность которой защищена от органического загрязнения, вызванного мастиками, использующимися в качестве уплотнений и содержащими кремнийорганические материалы типа силиконов.

Изобретение относится к нанесению тонких слоев, т.е. .
Зеркало // 2159217
Изобретение относится к области оптических инструментов, создающих световое изображение предметов любой геометрической конфигурации. .

Изобретение относится к металлорганическим порошкообразным соединениям, предназначенным для образования слоя окиси олова на прозрачном субстрате, особенно на стекле, способом пиролиза.

Изобретение относится к изготовлению известково-натриевых силикатных стекол с прозрачными электропроводными покрытиями, отражающими инфракрасное излучение, которые могут быть использованы в дисплеях на жидком кристалле.

Изобретение относится к модификации поверхности стекла путем нанесения покрытия, придающего стеклу декоративные свойства, и может быть использовано на заводах, производяпщх листовое стекло.

Изобретение относится к способу формирования покрытия и покрытию из диоксида титана, содержащему кристаллы с размером кристаллитов менее 35 нм

Настоящее изобретение относится к низкоэмиссионному стеклу и способу его получения. Низкоэмиссинное стекло содержит низкоэмиссионный слой и слой диэлектрика, сформированный на низкоэмиссионном слое, причем указанное стекло обладает эмиссионной способностью от 0,01 до 0,3 и коэффициентом пропускания в видимой области спектра 80% или более. Низкоэмиссионный слой и диэлектрический слой имеют явную границу раздела. Технический результат изобретения - обеспечение низкой эмиссионной способности и высокого коэффициента пропускания в видимой области спектра. Согласно настоящему изобретению предложен упрощенный процесс получения описанного выше низкоэмиссионного стекла, который позволяет уменьшить объем первоначальных инвестиций. 2 н. и 11 з.п. ф-лы, 3 ил., 2 табл.
Изобретение относится к стекольной промышленности и может быть использовано при производстве различных стеклянных изделий, например, бутылки, листового стекла, а также при производстве изделий из керамики. Способ производства продукции из стекла включает следующие этапы: подготовку сырья, составление шихты, варку стекломассы, формование изделий и их последующее охлаждение. После этапа формования на поверхность изделия наносят состав, содержащий оловоорганические или титаноорганические соединения для упрочнения стекла с одностенными углеродными нанотрубками (ОНТ), при этом содержание ОНТ в составе составляет от 0,005% до 0,2% от его общей массы. Техническим результатом изобретения является повышение прочности стеклоизделий, уменьшение расхода сырья.

Изобретение относится к способам ангобирования строительных и отделочных материалов, в частности стеклокремнезита. Способ ангобирования стеклокремнезита включает измельчение и рассев беложгущейся глины, плазменное напыление покрытия на поверхность стеклокремнезита и контроль качества, при этом производят усреднение беложгущейся глины и добавление к ней боя стекла, прошедшего измельчение, рассев и усреднение при массовом соотношении 1:1 соответственно, подачу предварительно подготовленной механической смеси в порошковый питатель и плазменное напыление смеси при мощности плазмотрона 6,0 кВт и расходе плазмообразующего газа 0,4 м3/мин. Техническим результатом изобретения является увеличение прочности сцепления покрытия и его морозостойкости при более низкой мощности работы плазмотрона. 2 табл., 1 пр.

Изобретение относится к тонкопленочной технологии получения мультиферроиков, а именно получению прозрачных наноразмерных пленок феррита висмута, которые обладают свойствами мультиферроика при комнатной температуре, так как температура Кюри BiFeO3 830°С, а температура антиферромагнитного перехода 370°С, и может быть использовано в производстве магнитооптических устройств записи, хранения и обработки информации. В соответствии с заявленным способом раствор смеси абиетата висмута и абиетата железа в органическом растворителе с концентрацией 0,05-1,5 мг/г в равномольном их соотношении наносят на подложку, например стеклянную, сушат, нагревают до температуры обжига и обжигают при температуре 500-600°С. Абиетаты железа (III) и висмута (III) получают взаимодействием нитратов висмута и железа с абиетиновой кислотой в расплаве. Техническим результатом изобретения является сокращение числа используемых реагентов, исключение применения высокоагрессивных и канцерогенных веществ при сохранении чистоты и наноразмерности получаемых пленок. 6 з.п. ф-лы, 3 пр., 3 ил.

Изобретение относится к обработке поверхности эмалированных стальных изделий и может быть использовано в производстве эмалированных стальных изделий, применяемых в химической, фармацевтической, пищевой, нефтяной, газовой промышленности и строительстве. В способе осуществляют термообработку эмалированного стального изделия в течение 25-30 минут в присутствии соли SnCl2 в соотношении 1,5-2 г на 40 см2 поверхности, причем термообработку осуществляют при температуре 500-550°С. Изобретение позволяет получить на поверхности эмалированных стальных изделий высококачественные химически стойкие оксидно-олвянные покрытия, обеспечивающие увеличение срока службы эмалированных стальных изделий. 2 ил., 8 пр.

Изобретение относится к устройству для покрытия изделий из стекла пленкой химического соединения на основе оксида металла или смеси оксидов металлов. Упомянутое устройство содержит секцию кожуха для покрытия, образующую внутреннюю камеру с входным отверстием и выходным отверстием, нагнетатель, расположенный во внутренней камере, для переноса воздуха от входного отверстия в направлении выходного отверстия и инжектор, который выполнен с возможностью подачи химического соединения во внутреннюю камеру, при этом инжектор расположен по меньшей мере частично во внутренней камере далее по потоку от нагнетателя и на расстоянии от стороны нагнетания лопасти вентилятора нагнетателя. В другом варианте осуществления изобретения нагнетатель выполнен с возможностью подачи во внутреннюю камеру воздуха, который должен быть смешан с химическим соединением, а инжектор выполнен с возможностью подачи химического соединения во внутреннюю камеру секции кожуха для покрытия, который расположен по меньшей мере частично во внутренней камере далее по потоку от нагнетателя и на расстоянии от него, которое составляет от 0,5-5 дюймов, и дальний конец которого введен во внутреннюю камеру на заданное расстояние, которое составляет 0,1-2 дюйма. Обеспечивается повышение эффективности нанесения покрытия на изделия из стекла при снижении вероятности покрытия лопастей вентилятора и упрощение очистки секции кожуха для покрытия. 2 н. и 10 з.п. ф-лы, 8 ил.
Изобретение относится к полупроводниковой технике, в частности к оптоэлектронике, а именно к электропроводящим оптически прозрачным покрытиям на основе оксида индия и олова. Способ получения покрытия на основе оксида индия и олова на поверхности подложки включает напыление на подложку оксида индия и олова с обеспечением требуемого значения показателя преломления покрытия за счет выбора технологического параметра процесса напыления. Согласно изобретению напыление осуществляют при нормальной ориентации подложки относительно потока напыляемого вещества, процесс напыления оксида индия и олова на подложку включает последовательно осуществляемые операцию напыления оксида индия и олова методом электронно-лучевого испарения или магнетронного распыления при температуре от 400 до 500°С и операцию напыления оксида индия и олова методом магнетронного распыления при температуре от 15 до 75°С, при этом обеспечивают требуемое значение показателя преломления покрытия за счет выбора массы вещества, наносимого на каждой из указанных операций напыления. Техническим результатом, достигаемым при реализации изобретения, является получение покрытия оксида индия и олова с заданным значением показателя преломления при обеспечении его однородности по толщине.

Изобретение может быть использовано при изготовлении металлооксидных солнечных элементов, сенсоров, систем запасания энергии, катализаторов. Для получения мезопористой наноструктурированной пленки металлооксида методом электростатического напыления напыляемый материал помещают в контейнер с выпускным отверстием. В качестве напыляемого материала используют сухой нанокристаллический порошок диоксида титана со средним размером частиц 25 нм. Заземляют твердую подложку, в качестве которой используют стекло, кварц, керамику с токопроводящим покрытием или металл. Подают напыляемый материал через выпускное отверстие с образованием потока напыляемого материала. Прикладывают разность потенциалов между выпускным отверстием и твердой заземленной подложкой. Полученную пленку диоксида титана подвергают обработке 10%-ной уксусной кислотой. Проводят термическую обработку при температуре 400-450°С в течение 30-40 мин. Изобретение позволяет упростить получение мезопористой наноструктурированной пленки металлооксида, повысить адгезию пленки к поверхности подложки, повысить КПД солнечного элемента при использовании такой пленки в качестве фотоэлектрода для создания металлооксидных сенсибилизированных солнечных элементов. 1 з.п. ф-лы, 4 ил., 4 пр.
Наверх