Способ активации кобальтового катализатора синтеза фишера-тропша

Изобретение относится к нефтехимии, газохимии, углехимии и касается синтеза Фишера-Тропша, в частности способа активации кобальтового катализатора. Описан способ активации кобальтового катализатора синтеза Фишера-Тропша, включающий активацию катализатора непосредственно в процессе синтеза Фишера-Тропша с неподвижным слоем катализатора путем нагрева катализатора при пропускании водородсодержащего газа над прекурсором катализатора, причем нагрев катализатора осуществляют в несколько этапов, ступенчато поднимая температуру, причем на первом этапе температуру поднимают со скоростью 0,5-2°С/мин до 180-200°С и выдерживают при этой температуре до достижения стабильных показателей по конверсии монооксида углерода и селективности по жидким углеводородам и метану, при этом показатели считаются стабильными при относительном различии в их величинах до 10 отн.%, а затем температуру поднимают на 9-12°С со скоростью 0,1-2°С/мин до достижения конверсии монооксида углерода 50-60%, после чего температуру увеличивают на 4-6°С со скоростью 0,1-2°С/мин и поддерживают до достижения конверсии монооксида углерода 60-80%. Технический эффект - исключение отдельной стадии активации и необходимости проведения процесса активации при повышенных температурах. 3 з.п. ф-лы, 1 табл., 9 пр.

 

Изобретение относится к нефтехимии, газохимии, углехимии и касается синтеза Фишера-Тропша, в частности процесса активации катализатора синтеза Фишера-Тропша.

Известны различные способы активации катализаторов синтеза Фишера-Тропша.

Известен способ активации катализатора синтеза Фишера-Тропша при его контакте с водородсодержащим газом, в котором концентрация водорода и скорость подачи газа увеличивается ступенчато или непрерывно в процессе активации (3аявка на Европейский патент №0533227).

Процесс активации катализаторов синтеза Фишера-Тропша может быть осуществлен как ex-situ, так и непосредственно in-situ в реакторе, особенно в случае установок со стационарным слоем катализатора.

Известен способ активации катализатора синтеза Фишера-Тропша, в котором катализатор сначала восстанавливают ex-situ, а затем восстановленный катализатор дополнительно активируют в присутствии водорода и жидких углеводородов (Заявка на Европейский патент №0589692).

Известен способ активации кобальтового катализатора, в котором свежеприготовленный катализатор синтеза Фишера-Тропша сначала смешивается с жидкими углеводородами и нагревается до температуры 250°C in-situ в реакторе, затем подвергается контакту с водородсодержащим газом (Патент США №6,475,943). Подобный способ активации катализатора синтеза Фишера-Тропша с использованием жидких углеводородов дает возможность получить активный катализатор при реализации процесса в кипящем и суспендированном в жидкости слоях катализатора. Данный способ реализации процесса имеет существенный технологический недостаток, заключающийся в необходимости проведения дорогостоящей стадии отделения частиц катализатора от жидкого продукта.

Известен способ активации кобальтового катализатора синтеза Фишера-Тропша как отдельная стадия, на которой катализатор подвергается воздействию газа, содержащего углеводороды, при повышенной температуре не менее 300°C в реакторе или вне его. Активирующий газ может содержать другие, помимо углеводородов, реакционные компоненты, способные активировать прекурсор катализатора, что не исключает использования водорода и монооксида углерода в смеси с углеводородами (Патент США №7,511,080).

Известен метод восстановления катализатора синтеза Фишера-Тропша in-situ в сларри-реакторе (с суспендированным слоем катализатора) при помощи газа, содержащего водород и монооксид углерода в малых количествах (менее 0,5 об.%) при повышенных температурах, предпочтительно 250-400°C (Патент США №7,001,928).

Наиболее близким техническим решением к данному изобретению является способ активации кобальтовых катализаторов, заключающийся в пропускании водородсодержащего газа над прекурсором катализатора при повышенной температуре, предпочтительно выше 250°C. В качестве водородсодержащего газа может применяться синтез-газ (патент РФ №2367521).

Большинство известных способов проведения процесса активации кобальтового катализатора синтеза Фишера-Тропша проводятся как отдельная стадия перед применением катализатора непосредственно в синтезе Фишера-Тропша для получения углеводородов из смеси монооксида углерода и водорода при температуре не менее 250°C. Недостатком подобных способов являются дополнительные временные и материальные затраты на проведение отдельной стадии активации и необходимость применения более дорогих жаропрочных сталей для проведения процесса активации при повышенных температурах, относительно температур проведения синтеза Фишера-Тропша, in-situ в реакторе синтеза Фишера-Тропша, или технологические затруднения, связанные с транспортом активированного катализатора и использованием дополнительного оборудования, при проведении процесса активации в отдельном реакторе (ex-situ).

Целью данного изобретения является создание способа активации кобальтового катализатора синтеза Фишера-Тропша, обеспечивающего активацию катализатора непосредственно в процессе синтеза Фишера-Тропша, что исключает необходимость проведения процесса активации при высоких температурах и связанных с этим энергетических затрат, повышенных требований к конструкции катализатора и свойствам его компонентов.

Техническим результатом, обеспечивающим достижение поставленной цели, служит снижение температуры при активации катализатора и проведение активации непосредственно в процессе синтезе Фишера-Тропша.

Технический результат достигается тем, что активация кобальтового катализатора синтеза Фишера-Тропша проводится непосредственно в процессе превращения монооксида углерода и водорода в углеводороды в реакторе синтеза Фишера-Тропша с неподвижным слоем катализатора при том, что нагрев катализатора осуществляют в несколько этапов, ступенчато поднимая температуру, причем на первом этапе температуру поднимают со скоростью 0,5-2°C/мин до 180-200°C и выдерживают при этой температуре до достижения стабильных показателей по конверсии монооксида углерода и селективности по жидким углеводородам и метану, при этом показатели считаются стабильными при относительном различии в их величинах до 10 отн.%, а затем температуру поднимают на 9-12°C со скоростью 0,1-2°C/мин до достижения конверсии монооксида углерода 50-60%, после чего температуру увеличивают на 4-6°C со скоростью 0,1-2°C/мин и поддерживают до достижения конверсии монооксида углерода 60-80%. Также технический результат достигается тем, что для активации используют смесь водорода и монооксида углерода с мольным соотношением 1,9-2,2:1, а давление газа в процессе активации составляет 1,5-2,5 МПа, при этом объемную скорость газа в период активации поддерживают в пределах 900-1500 ч-1.

Способ реализуют следующим образом.

Катализатор синтеза Фишера-Тропша содержит активный компонент, в частности кобальт, нанесенный на носитель. Носителем кобальтового катализатора синтеза Фишера-Тропша, активируемого способом по данному изобретению, могут служить тугоплавкие неорганические оксиды, в частности оксид алюминия, оксид кремния, оксид титана, оксид циркония, аморфные или кристаллические алюмосиликаты или их смеси.

Активный компонент может наноситься на носитель любым известным в технике способом, например пропиткой, смешением соединений кобальта с компонентами носителя или их прекурсорами или соосаждением солей кобальта с компонентами носителя или их прекурсорами. Наиболее предпочтительным способом является пропитка, в результате которой носитель контактирует с соединением кобальта в присутствии жидкости, в частности в виде раствора соединения металла. Соединение кобальта может быть неорганическим или органическим, неорганические соединения являются предпочтительными, особенно нитраты. Используемая жидкость также может быть либо органической, либо неорганической. Наиболее подходящей жидкостью является вода. Следует учитывать, что вода, по крайней мере, частично может быть кристаллизационной водой, которая освобождается из соединения кобальта при пропитке.

Содержание кобальта может составлять 10-30% от массы катализатора.

Помимо каталитически активного металла в катализаторе может присутствовать один или более промоторов. Промоторы могут присутствовать в качестве металлов или в качестве оксидов металлов. Подходящие промоторы включают оксиды металлов IIA, IIIB, IVB, VB, VIB и/или VIIB группы Периодической системы Менделеева, оксиды лантанидов и/или актинидов. Предпочтительно катализатор содержит, по крайней мере, один оксид элемента IVB, VB и/или VIIB групп Периодической системы Менделеева, в частности титана и/или циркония. Кроме того, вместо или в дополнение к промотору - оксиду металла, катализатор может содержать металлический промотор, выбранный из VIIB и/или VIII групп Периодической системы Менделеева. Наиболее предпочтительными из металлических промоторов являются платина, рений и/или рутений.

Промотор может наноситься на носитель любым описанным выше методом для нанесения активного компонента, наиболее предпочтительно - пропиткой из водных растворов прекурсоров промотора. Промотор может наноситься на любой стадии пропитки, как до, так и после нанесения активного компонента катализатора. При этом нанесение оксидных промоторов предпочтительно производить до нанесения кобальта, а нанесение металлических промоторов - либо после нанесения активного компонента, либо совместно с ним на последней стадии.

Промотор, если он присутствует в катализаторе, содержится в количестве предпочтительно 0,5-25% от массы катализатора, при этом для оксидных промоторов предпочтительно в количестве 10-20% от массы катализатора, для металлических промоторов - предпочтительно 0,5-1,5% от массы катализатора.

Смесь монооксида углерода и водорода, являющаяся сырьем для образования углеводородов в процессе синтеза Фишера-Тропша, может содержать указанные газы в мольном соотношении H2:CO=1,9-2,2. Также смесь может содержать инертный газ, например азот или аргон, предпочтительно в количестве 3-10 об.%.

Давление в процессе активации и синтеза Фишера-Тропша в реакторе составляет предпочтительно 1,5-2,5 МПа.

Объемная скорость подачи синтез-газа в процессе активации и синтеза Фишера-Тропша составляет 500-1500 ч-1.

Процесс активации осуществляют при температуре в пределах от 180 до 285°C. Свежеприготовленный катализатор, помещенный в реактор синтеза Фишера-Тропша с неподвижным слоем, нагревают в токе смеси монооксида углерода и водорода с выбранной для процесса объемной скоростью газа до начальной температуры, обычно в интервале 180-200°C. Затем температура ступенчато поднимается до конечного значения 255-285°C с шагом 4-12°C. Скорость роста температуры до начального значения составляет 0,5-2 град./мин, скорость подъема между ступенями температурного режима составляет 0,1-2 град./мин. Продолжительность выдерживания при температуре на каждой ступени определяется стабилизацией значений конверсии CO и селективности по жидким углеводородам и метану при данной температуре. Процесс активации по данному способу ведут до достижения конверсии CO в присутствии данного катализатора 60-80%.

Расчет конверсии СО осуществляется по следующей формуле:

, где

- масса монооксида углерода в 1 м3 входящего в реактор газа

- масса монооксида углерода в 1 м3 выходящего из реактора газа

Определение селективности по жидким углеводородам осуществляется по следующей формуле:

, где

mC/С5+ - масса углерода, содержащегося в жидких углеводородах, образующихся в результате синтеза из 1 м3 входящего в реактор газа;

mC/COвx - масса углерода, содержащегося в монооксиде углерода в 1 м3 входящего в реактор газа;

mC/COвых - масса углерода, содержащегося в монооксиде углерода в 1 м3 выходящего из реактора газа.

Определение селективности по метану осуществляется по следующей формуле:

где

mC/CH4 - масса углерода, содержащегося в метане, образующемся в результате синтеза из 1 м3 входящего в реактор газа.

Расчет выхода жидких углеводородов ведется по следующей формуле:

где

mС5+ - масса жидких углеводородов, образующихся в результате синтеза Фишера-Тропша в течение времени τ;

- объем проходящего через слой катализатора синтез-газа, м3.

Определение содержания исходных и образующихся веществ в отходящих из реактора синтеза Фишера-Тропша газах может осуществляться любым известным способом, например методом газожидкостной хроматографии, основанной на разделении газовой смеси вследствие различной растворимости компонентов пробы в жидкости или различной стабильности образующихся комплексов. Неподвижной фазой служит жидкость, нанесенная на инертный носитель, подвижной - газ.

Непосредственно процесс активации согласно настоящему изобретению осуществляют следующим образом. Свежеприготовленный катализатор загружают в реактор синтеза Фишера-Тропша, подают в реактор смесь монооксида углерода и водорода с соотношением 1,9-2,2 при объемной скорости 500-1500 ч-1 и устанавливают рабочее давление в реакторе, 1,5-2,5 МПа. Затем катализатор нагревают до первоначальной температуры в интервале 180-200°C со скоростью нагрева 0,5-2 град./мин и выдерживают при этой температуре до достижения стабильных показателей по конверсии монооксида углерода и селективности по жидким углеводородам и метану. Показатели считаются стабильными при различии в их величинах до 10 отн.%. Затем температуру поднимают на 9-12°C со скоростью 0,1-2 град./мин и так далее до достижения конверсии монооксида углерода 50-60%. Вышеуказанная скорость нагрева относится к скорости в период повышения температуры, а не к средней скорости увеличения температуры от первоначальной до конечной. После достижения величины конверсии монооксида углерода выше 50-60% температуру увеличивают на 4-6°C со скоростью 0,1-2°C/мин и выдерживают при каждой температуре до достижения стабильных показателей по конверсии монооксида углерода и селективности по жидким углеводородам и метану, и так далее до достижения конверсии монооксида углерода 60-80%.

Активированный подобным образом катализатор является эффективным в синтезе Фишера-Тропша и не уступает по активности и селективности по целевому продукту катализаторам, активированным другими известными в технике способами, например, активируемым при температурах 300-600°C водородом с объемной скоростью 1000-5000 ч-1, что становится ясным из примеров А, 1-9. В таблице указаны результаты по влиянию заявляемого способа активации на селективность по С5+ и выход жидких углеводородов для различных катализаторов.

Эффективность работы катализатора оценивают по остаточному содержанию монооксида углерода в составе отходящих газов и по содержанию в продуктах синтеза углеводородов с числом углеродных атомов не менее 5 в процессе синтеза жидких углеводородов в синтезе Фишера-Тропша пропусканием синтез-газа с соотношением водорода к монооксиду углерода от 1,9:1 до 2,2:1 через неподвижный слой катализатора, объемом 2,5 мл, загруженного в трубчатый реактор диаметром 13 мм, с объемной скоростью 500-1500 ч-1 в диапазоне температур 180-285°C под давлением 1,5-2,5 МПа.

В таблице 1 указаны показатели синтеза Фишера-Тропша, проведенного в присутствии катализаторов, активированных способом, соответствующим изобретению.

Способ иллюстрируется следующими примерами.

Пример А (пример сравнения)

В этом примере рассматривается один из наиболее распространенных в промышленности катализаторов синтеза Фишера-Тропша 10% Co/γ-Al2O3 (кобальтовый катализатор, содержащий 10% масс. кобальта, нанесенного на γ-оксид алюминия). Катализатор активируют при 450°C в токе водорода с объемной скоростью 3000 ч-1 в течение 1 часа при давлении 0,1 МПа.

Катализатор содержит 10% кобальта от массы катализатора и 90% носителя. Кобальт наносят пропиткой из водного раствора нитрата кобальта и закрепляют на поверхности носителя прокаливанием в токе воздуха при температуре 400°C в течение 1 часа. Носитель представляет собой цилиндрические гранулы диаметром 2,0-2,5 мм и длиной 3-5 мм и состоит из γ-Al2O3, прокаленного в токе воздуха при температуре 500°C в течение 4 часов.

Пример 1

Катализатор 10% Co/γ-Al2O3 соответствует катализатору в примере А. Катализатор активируют в токе синтез-газа с соотношением водорода к монооксиду углерода 1,90:1 с объемной скоростью 800 ч-1 при давлении 2 МПа по следующей температурной программе:

Температура, °C Время, ч
190 6
200 6
210 6
220 6
230 6
240 6
250 12
260 30
265 12
270 24
275 6
280 22

Скорость роста температуры до первоначального значения 190°C составляет 1,5 град./мин, скорость роста температуры между ступенями - 0,5 град./мин.

Пример 2

Катализатор 10% Co/(90% ZrO2+10% γ-Al2O3) содержит 10% кобальта от массы катализатора и 90% носителя. Кобальт нанесен пропиткой из водного раствора нитрата кобальта и закреплен на поверхности носителя прокаливанием в токе воздуха при температуре 400°C в течение 1 часа. Носитель представляет собой цилиндрические гранулы диаметром 2,0-2,5 мм и длиной 3-5 мм, прокаленные в токе воздуха при температуре 500°C в течение 4 часов, и состоит из 90% ZrO2 и 10% γ-Al2O3. Катализатор активируют в токе синтез-газа с соотношением водорода к монооксиду углерода 1,96:1 с объемной скоростью 900 ч-1 при давлении 2,1 МПа по следующей температурной программе:

Температура, °C Время, ч
180 6
190 6
200 6
210 6
220 6
230 12
240 12
250 18
260 18
270 18

Скорость роста температуры до первоначального значения 180°C составляет 0,5 град./мин, скорость роста температуры между ступенями - 0,2°C/мин.

Пример 3

Катализатор 20% Co/(90% ZrO2+10% γ-Al2O3) отличается от катализатора в примере 2 тем, что содержит 20% кобальта от массы катализатора и 80% носителя. Катализатор активируют в токе синтез-газа с соотношением водорода к монооксиду углерода 2,09:1 с объемной скоростью 1500 ч-1 при давлении 1,5 МПа по следующей температурной программе:

Температура, °C Время, ч
200 6
210 6
220 16
230
240
18
18
250 18
255 24

Скорость роста температуры до первоначального значения 200°C - 2,0 град./мин, скорость роста температуры между ступенями - 0,3 град./мин.

Пример 4

Катализатор 30% Co+50% ZrO2+20% γ-Al2O3 содержит 30% кобальта от массы катализатора, и 50% оксида циркония, и 20% оксида алюминия. Катализатор приготовляют смешением нитрата кобальта с оксидом циркония и прекурсором γ-Al2O3. Гранулированный катализатор прокаливают при 400°C в течение 4 часов. Катализатор представляет собой цилиндрические гранулы диаметром 2,0-2,5 мм и длиной 3-5 мм. Катализатор активируют в токе синтез-газа с соотношением водорода к монооксиду углерода 2,07:1 с объемной скоростью 1200 ч-1 при давлении 1,8 МПа по следующей температурной программе:

Температура, °C Время, ч
200 6
210 6
220 6
230 6
240 6
250 6
260 6
265 6
270 6
275 6
280 36

Скорость роста температуры до первоначального значения 200°C составляет 1,5 град./мин, скорость роста температуры между ступенями - 1,0 град./мин.

Пример 5

Катализатор 10% Co/(80% TiO2+20% γ-Al2O3) содержит 10% кобальта от массы катализатора и 90% носителя. Кобальт наносят пропиткой из водного раствора нитрата кобальта и закрепляют на поверхности носителя прокаливанием в токе воздуха при температуре 400°C в течение 1 часа. Носитель представляет собой цилиндрические гранулы диаметром 2,0-2,5 мм и длиной 3-5 мм, прокаленные в токе воздуха при температуре 500°C в течение 4 часов, и состоит из 80% TiO2 и 20% γ-Al2O3. Катализатор активируют в токе синтез-газа с соотношением водорода к монооксиду углерода 1,95:1 с объемной скоростью 600 ч-1 при давлении 2 МПа по следующей температурной программе:

Температура, °C Время, ч
200 6
210 6
221 6
230 6
240 14
252 18
261 18
270 24
275 18

Скорость роста температуры до первоначального значения 200°C составляет 2,0 град./мин, скорость роста температуры между ступенями составляет 1,5 град./мин.

Пример 6

Катализатор 20% Co/(50% ZrO2+50% γ-Al2O3) содержит 20% кобальта от массы катализатора и 80% носителя. Кобальт наносят пропиткой из водного раствора нитрата кобальта и закрепляют на поверхности носителя прокаливанием в токе воздуха при температуре 400°C в течение 1 часа. Носитель представляет собой цилиндрические гранулы диаметром 2,0-2,5 мм и длиной 3-5 мм, прокаленные в токе воздуха при температуре 500°C в течение 4 часов, и состоит из 50% ZrO2 и 50% γ-Al2O3. Катализатор активируют в токе синтез-газа с соотношением водорода к монооксиду углерода 2,20:1 с объемной скоростью 500 ч-1 при давлении 2,2 МПа по следующей температурной программе:

Температура, °C Время, ч
200 12
210 12
220 18
230 18
240 12
250 18
260 18
264
270
18
6
275 6

Скорость роста температуры до первоначального значения 200°C составляет 0,5 град./мин, скорость роста температуры между ступенями - 0,1 град./мин.

Пример 7

Катализатор 20% Co/(40% ZrO2+40% SiO2+20% γ-Al2O3) содержит 20% кобальта от массы катализатора и 80% носителя. Кобальт наносят пропиткой из водного раствора нитрата кобальта и закрепляют на поверхности носителя прокаливанием в токе воздуха при температуре 400°C в течение 1 часа. Носитель представляет собой цилиндрические гранулы диаметром 2,0-2,5 мм и длиной 3-5 мм, прокаленные в токе воздуха при температуре 500°C в течение 4 часов, и состоит (по массе) из 40% ZrO2, 40% SiO2 и 20% γ-Al2O3. Катализатор активируют в токе синтез-газа с соотношением водорода к монооксиду углерода 2,07:1 с объемной скоростью 1000 ч-1 при давлении 2 МПа по следующей температурной программе:

Температура, °C Время, ч
200 6
210 6
220 6
230 12
240 18
252 18
261 12
270 12
280 12
285 24

Скорость роста температуры до первоначального значения 200°C - 1,0 град./мин, скорость роста температуры между ступенями - 2,0 град./мин.

Пример 8

Катализатор 20% Co/(80% γ-Al2O3+10% ZrO2) содержит 20% кобальта от массы катализатора и 80% носителя. Кобальт наносят пропиткой из водного раствора нитрата кобальта и закрепляют на поверхности носителя прокаливанием в токе воздуха при температуре 400°C в течение 1 часа. Носитель представляет собой цилиндрические гранулы диаметром 2,0-2,5 мм и длиной 3-5 мм, прокаленные в токе воздуха при температуре 500°C в течение 4 часов, и состоит из 80% γ-Al2O3, модифицированного 20% ZrO2. Модификация оксида алюминия проводится пропиткой водным раствором шестиводного нитрата цирконила с последующим прокаливанием в токе воздуха при 400°C в течение 1 часа. Катализатор активируют в токе синтез-газа с соотношением водорода к монооксиду углерода 1,99:1 с объемной скоростью 1000 ч-1 при давлении 2,5 МПа по следующей температурной программе:

Температура, °C Время, ч
200 6
210 6
220 6
230 6
240 12
250 18
260 18
266 18
270 18

Скорость роста температуры до первоначального значения 200°C - 1,5 град./мин, скорость роста температуры между ступенями - 0,5 град./мин.

Пример 9

Катализатор 20% Co/(80% γ-Al2O3+10% ZrO2) отличается от катализатора в примере 8 тем, что модификация оксида алюминия проводится пропиткой 70%-ного раствора н-пропилоксида циркония в н-пропаноле с последующим прокаливанием в токе воздуха при 400°C в течение 1 часа. Катализатор активируют в токе синтез-газа с соотношением водорода к монооксиду углерода 1,99:1 с объемной скоростью 1000 ч-1 при давлении 2 МПа по следующей температурной программе:

Температура, °C Время, ч
200 6
210 6
220 6
230 12
241 12
252 18
261 18
265 18
270 24
275 12

Скорость роста температуры до первоначального значения 200°C - 1,2 град./мин, скорость роста температуры между ступенями - 1,2 град./мин.

Таблица 1
Показатели синтеза Фишера-Тропша, проведенного в присутствии катализаторов, активированных способом, соответствующим изобретению
Пример Конверсия CO, % Селективность по CH4, % Селективность по C5+, % Выход, г С5+3 синтез-газа
А 74 28 50 81
1 71 27 57 81
2 76 26 56 87
3 74 32 49 70
4 69 28 54 73
5 68 28 52 73
6 70 32 49 68
7 60 35 42 46
8 72 28 52 75
9 80 28 52 81

Изобретение позволяет исключить отдельную стадию активации и необходимость проведения процесса активации при повышенных температурах.

1. Способ активации кобальтового катализатора синтеза Фишера-Тропша, включающий активацию катализатора непосредственно в процессе синтеза Фишера-Тропша с неподвижным слоем катализатора путем нагрева катализатора при пропускании водородсодержащего газа над прекурсором катализатора, отличающийся тем, что нагрев катализатора осуществляют в несколько этапов, ступенчато поднимая температуру, причем на первом этапе температуру поднимают со скоростью 0,5-2°С/мин до 180-200°С и выдерживают при этой температуре до достижения стабильных показателей по конверсии монооксида углерода и селективности по жидким углеводородам и метану, при этом показатели считаются стабильными при относительном различии в их величинах до 10 отн.%, а затем температуру поднимают на 9-12°С со скоростью 0,1-2°С/мин до достижения конверсии монооксида углерода 50-60%, после чего температуру увеличивают на 4-6°С со скоростью 0,1-2°С/мин и поддерживают до достижения конверсии монооксида углерода 60-80%.

2. Способ по п.1, отличающийся тем, что для активации используют смесь водорода и монооксида углерода с мольным соотношением 1,9-2,2:1.

3. Способ по п.1, отличающийся тем, что давление газа в процессе активации составляет 1,5-2,5 МПа.

4. Способ по п.1, отличающийся тем, что объемную скорость газа в период активации поддерживают в пределах 900-1500 ч-1.



 

Похожие патенты:

Изобретение относится к нефтехимической промышленности, а именно к катализатору и способу получения алифатических углеводородов из оксида углерода и водорода. .

Изобретение относится к способу трехфазного низкотемпературного синтеза Фишера-Тропша, в котором сырьевые H2 и CO конвертируют в углеводороды и, возможно, их оксигенаты путем введения в контакт H2 и CO в присутствии в зоне реакции катализатора синтеза Фишера-Тропша на основе железа.

Изобретение относится к реактору синтеза Фишера-Тропша псевдоожиженного слоя газ-жидкость-твердое. .

Изобретение относится к области нефтехимии, газохимии, углехимии, в частности к синтезу углеводородов C5 и выше из СО и Н2 по реакции Фишера-Тропша. .

Изобретение относится к способу превращения монооксида углерода в углеводороды С2 + в присутствии водорода и металлсодержащего катализатора в многотрубчатом реакторе, содержащем указанный катализатор, нанесенный на носитель на основе вспененного карбида кремния, осуществляемому в следующих рабочих условиях: WH (GHSV) изменяется от 100 до 5000 час-1 и WHSV изменяется от 1 до 100 час-1.

Изобретение относится к области химии. .
Изобретение относится к способу приготовления катализатора для синтеза Фишера-Тропша, включающему следующие стадии а) - d): а) предварительную обработку оксида алюминия или диоксида кремния в сферической форме посредством пропитки в водном растворе с рН 7 или ниже, который выбран из группы, состоящей из водного раствора азотной кислоты, водного раствора уксусной кислоты, водного раствора серной кислоты, водного раствора соляной кислоты, ионно-обменной воды и дистиллированной воды; b) пропитку обработанного оксида алюминия или диоксида кремния в растворе циркония, находящемся в объёмном количестве, в два или большее число раз превышающем объем оксида алюминия или диоксида кремния, чтобы нанести цирконий на обработанный оксид алюминия или диоксид кремния, с) отжиг оксида алюминия или диоксида кремния с нанесённым на него цирконием с получением носителя, в котором цирконий в виде оксида селективно нанесен вблизи внешней поверхности носителя металла, d) нанесение на носитель одного или нескольких типов металлов, выбранных из группы, состоящей из кобальта и рутения в количестве от 3 до 50 масс.

Изобретение относится к области химии и металлургии и может быть использовано при получении ценных продуктов из красного шлама. .

Изобретение относится к нефтехимии, газохимии, углехимии и касается катализатора синтеза углеводородов, содержащих 5 и более атомов углерода, из СО и Н2 (синтеза Фишера-Тропша), способа получения углеводородов С5+ с использованием указанного катализатора и способа получения катализатора.

Изобретение относится к способу гидроочистки парафина, включающему первый этап, на котором парафин с содержанием С21 или выше нормальных парафинов 70% массовых или больше используется в качестве исходного материала, и парафин контактирует с катализатором при температуре реакции 270-360°С в присутствии водорода для гидрокрекинга, катализатора, состоящего из металла VIII группы Периодической Таблицы, помещенного на носитель, содержащий аморфную твердую кислоту, второй этап, на котором сырьевой материал из парафина временно заменяют легким парафином, с содержанием С9-20 парафинов 60% массовых или больше, и легкий парафин контактирует с катализатором при температуре реакции 120-335°С в присутствии водорода для гидрокрекинга, и третий этап, на котором сырьевой материал легкого парафина заменяют парафином, и парафин контактирует с катализатором при температуре реакции 270-360°С в присутствии водорода для гидрокрекинга.
Изобретение относится к процессам регенерации катализаторов для гидрогенизации растительных масел и жиров. .

Изобретение относится к способу получения этиленненасыщенных галогенсодержащих алифатических углеводородов путем термического расщепления насыщенных галогенсодержащих алифатических углеводородов.
Изобретение относится к регенерации твердого катализатора, который включает продукт реакции галогенида металла, выбранного из группы, включающей алюминий, цирконой, олово, тантал, титан, галлий, сурьму, фосфор, железо, бор и их смесь, и связанных поверхностных гидроксильных групп неорганического тугоплавкого оксида и металла с нулевой валентностью, выбранного из группы, включающей платину, палладий, никель, рутений, родий, осмий, иридий и их смесь.

Изобретение относится к каталитическим процессам нефтепереработки и нефтехимии и может быть использовано для увеличения эффективности предварительной регенерации алюмосиликатного катализатора крекинга.

Изобретение относится к способу трехфазного низкотемпературного синтеза Фишера-Тропша, в котором сырьевые H2 и CO конвертируют в углеводороды и, возможно, их оксигенаты путем введения в контакт H2 и CO в присутствии в зоне реакции катализатора синтеза Фишера-Тропша на основе железа.

Изобретение относится к способам активации ex-situ и пассивации катализаторов из благородного металла на инертном носителе. .
Наверх