Способ получения распыляемой мишени из сплава на основе алюминия

Изобретение относится к области металлургии и может быть использовано при изготовлении вкладышей подшипников скольжения. Проводят плавку алюминия, доводят расплав до перегретого состояния при температуре 1100°С. Затем последовательно вводят свинец, олово, медь и кремний, так чтобы получить сплав либо с составом, мас.%: свинец 7,4, олово 0,9, медь 0,4, кремний 3,4, алюминий 87,9, либо с составом, мас.%: свинец 9,1, олово 2,1, медь 1,6, кремний 4,6, алюминий 82,6, перемешивают расплав, осуществляют выдержку при температуре перегрева 1100°С и сливают расплав в горизонтальную плоскую форму. Затвердевающий в форме расплав обрабатывают скрещенными электрическим и магнитным полями, и изготавливают литую распыляемую мишень. Получается мишень, позволяющая получить тонкие рабочие слои на обрабатываемых изделиях и обеспечить улучшенную прирабатываемость и противозадирность рабочих слоев без снижения прочности и износостойкости. 1 табл., 1 пр.

 

Изобретение относится к области металлургии металлических материалов с высокими трибологическими и прочностными свойствами, используемыми в машиностроении при изготовлении вкладышей для двигателей внутреннего сгорания (ДВС). Основными требованиями, предъявляемыми к таким материалам, являются высокая стойкость к износу и работоспособность в экстремальных условиях.

Известны вкладыши коренных и шатунных подшипников ДВС, включающие стальную основу с нанесенным на внутреннюю поверхность антифрикционным слоем из свинцовистой бронзы, на которую гальваническим методом нанесен тонкий слой сплава свинец-олово-медь. Недостатком таких вкладышей является быстрое разрушение гальванического слоя сплава свинец-олово-медь в современных высокофорсированных ДВС. Известна другая группа вкладышей, также имеющих стальную основу с нанесенным на внутреннюю поверхность антифрикционным слоем из свинцовистой бронзы, на которую распылением, например магнетронным или катодным, наносится тонкий (20 мкм) слой сплава алюминий-олово-медь. Недостатками таких вкладышей являются недостаточная прирабатываемость и противозадирность слоя сплава алюминий-олово-медь по сравнению с традиционными покрытиями, содержащими свинец и олово. Простое увеличение содержания олова в сплаве алюминия для улучшения прирабатываемости приводит к снижению прочности и износостойкости, т.е. лишает данную конструкцию свойственных ей преимуществ. Другим серьезным фактором является толщина покрытия, поскольку установлено, что чем тоньше антифрикционный слой, тем большую нагрузку может нести подшипник. Однако серьезной проблемой оказалось получение магнетронной мишени из антифрикционных сплавов на основе алюминия с рациональным соотношением и распределением компонентов. Из уровня техники наиболее близким аналогом является способ получения распыляемой мишени [WO 2001073156], включающий предварительную термомеханическую обработку, холодную деформацию исходного литого слитка с помощью угловой экструзии, формирование распыляемой мишени и крепление мишени на охлаждающей плите. Хотя указанный аналог по существу ограничивается глубокой деформацией исходного литого слитка с получением мелкозернистой структуры, общим легированием и соответствующим химическим составом тонкой пленки, идеологически способ, заявленный в аналоге, представляется правильным.

Задачей настоящего изобретения является получение распыляемой мишени из сплава на основе алюминия с целью повышения надежности подшипника за счет тонких напыленных рабочих слоев, а также прирабатываемости и противозадирности рабочих слоев без снижения прочности и износостойкости.

Поставленная задача реализуется с помощью способа получения распыляемой мишени из сплава на основе алюминия, включающего формообразование распыляемой мишени, отличающегося тем, что проводят плавку алюминия, доводят расплав до перегретого состояния 1100°С, последовательно вводят свинец, олово, медь и кремний, так чтобы получить заготовку либо с составом, мас.%: свинец 7,4, олово 0,9, медь 0,4, кремний 3,4, алюминий 87,9, либо с составом, мас.%: свинец 9,1, олово 2,1, медь 1,6, кремний 4,6, алюминий 82,6, перемешивают расплав, осуществляют выдержку при температуре перегрева 1100°С и сливают расплав в горизонтальную плоскую форму, при этом затвердевающий в форме расплав обрабатывают скрещенными электрическим и магнитным полями, и изготавливают литую распыляемую мишень.

Способ осуществляется следующим образом. В расплав алюминия, перегретый до температуры 1100°C, последовательно вводят свинец, олово, медь и кремний в необходимом количестве, перемешивают расплав, осуществляют выдержку при температуре перегрева 1100°С и слив расплава в горизонтальную плоскую форму, при этом затвердевающий в форме расплав обрабатывают скрещенными электрическим и магнитным полями, и изготавливают литую распыляемую мишень.

Пример реализации способа

Для проверки эксплуатационных характеристик антифрикционного сплава выплавлено два слитка следующего химического состава (Таблица):

Химический состав заготовок (мас.%)
Pb Sn Cu Si Al
1 7,4 0,9 0,4 3,4 87,9
2 9,1 2,1 1,6 4,6 82,6

Экспериментальная технология получения слитков сплава на основе алюминия включала выплавку алюминия в вакуумной индукционной печи и доведение расплава до температуры 1100°С. В перегретый расплав алюминия последовательно вводили олово, свинец, медь и кремний в необходимом количестве, выдерживали и перемешивали перегретый расплав при 1100°С в течение 30 минут. Под необходимым количеством вводимого компонента подразумевалось количество, которое обеспечивало получение заданного содержания компонента в финишном сплаве с учетом потерь. После выдержки и перемешивания расплав сливали в форму, и затвердевающий расплав обрабатывали скрещенными электрическим и магнитным полями до получения поликристаллического слитка диаметром до 200 мм, из которого получали пластины для изготовления распыляемой мишени диаметром 182 мм. Мишень использовали для напыления тонкого рабочего слоя на стальных вкладышах, покрытых свинцовистой бронзой и тонким барьерным никелевым слоем. Перед нанесением пленки производили очистку вкладышей ионами аргона для удаления окислов и загрязнений. По результатам наших экспериментов вкладыши с толщиной рабочего слоя 12-20 мкм, полученные в результате распыления магнетронных мишеней из указанного сплава на основе алюминия, выдерживали нагрузку до 140 МПа.

Способ получения распыляемой мишени из сплава на основе алюминия, отличающийся тем, что проводят плавку алюминия, доводят расплав до перегретого состояния при температуре 1100°С, последовательно вводят свинец, олово, медь и кремний так, чтобы получить сплав либо с составом, мас.%: свинец 7,4, олово 0,9, медь 0,4, кремний 3,4, алюминий 87,9, либо с составом, мас.%: свинец 9,1, олово 2,1, медь 1,6, кремний 4,6, алюминий 82,6, перемешивают расплав, осуществляют выдержку при температуре перегрева 1100°С и сливают расплав в горизонтальную плоскую форму, при этом затвердевающий в форме расплав обрабатывают скрещенными электрическим и магнитным полями, и изготавливают литую распыляемую мишень.



 

Похожие патенты:

Изобретение относится к способу формирования бритвенного лезвия. .
Изобретение относится к машиностроению и может быть использовано для защиты поверхности деталей машин из титановых сплавов, эксплуатирующихся в условиях морского климата.
Изобретение относится к области машиностроения и может быть использовано для обработки поверхности титановых изделий, таких как лопатки компрессора газотурбинных двигателей и установок.

Изобретение относится к области металлургии, в частности к жаростойкому покрытию с градиентом хрома по профилю пера лопатки. .

Изобретение относится к способу покрытия основы и изделие с покрытием его основы. .

Изобретение относится к области авиадвигателестроения, а именно к нанесению покрытий на лопатки компрессора газотурбинных двигателей. .

Изобретение относится к устройству для нанесения покрытий на алмазные порошки. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. .
Изобретение относится к способам нанесения износостойких покрытий на режущий инструмент и может быть использовано в металлообработке. .

Изобретение относится к области металлургии, в частности к деформируемым материалам на основе алюминия, и может быть использовано при получении изделий, работающих при повышенных температурах до 350°С.
Изобретение относится к сплаву серии АА7000 и к способу изготовления продуктов из этого алюминиевого сплава, а именно к алюминиевым деформированным продуктам относительно большой толщины, в частности от 30 до 300 мм.

Изобретение относится к металлургии и может быть использовано при производстве полуфабрикатов в виде поковок, штамповок, прессованных прутков и профилей, катаных плит и листов из высокопрочных сплавов системы Al-Zn-Mg-Cu, предназначенных для применения в силовых конструкциях авиакосмической техники и транспортных средств, к которым предъявляются повышенные требования по прочности, трещиностойкости, усталостной долговечности, коррозионной стойкости.
Изобретение относится к области металлургии металлических материалов с высокими антифрикционными и прочностными свойствами, используемыми при изготовлении подшипников скольжения.
Изобретение относится к области металлургии металлических материалов с высокими антифрикционными и прочностными свойствами, используемыми при изготовлении подшипников скольжения.
Изобретение относится к области металлургии металлических материалов с высокими антифрикционными и прочностными свойствами, используемыми при изготовлении подшипников скольжения.
Изобретение относится к области металлургии и может быть использовано при получении паяных конструкций из алюминия и его сплавов. .

Изобретение относится к области металлургии, а именно к сплавам на основе алюминия, и может быть использовано при получении деталей автомобильных двигателей, работающих под действием высоких нагрузок при температурах до 150-200°С: головки цилиндров, корпуса водяных насосов, впускные трубы и др.

Изобретение относится к области металлургии материалов на основе алюминия и может быть использовано при получении изделий электротехнического назначения, в частности проводов высоковольтных ЛЭП.
Изобретение относится к металлургии редких металлов и может быть использовано для получения жаропрочного никелевого сплава, а также для формирования внутренних электродов многослойных керамических электронных компонентов.
Наверх