Способ активного контроля рабочих частот

Изобретение относится к области электрорадиотехники и может быть использовано в дуплексных и полудуплексных асинхронных системах передачи данных с каналом обратной связи. Технический результат - повышение надежности системы передачи данных за счет контроля за состоянием выделенного частотного ресурса, не снижающего информационной скорости передачи данных. Способ активного контроля рабочих частот характеризуется тем, что определяют пригодность резервной частоты на замену рабочей путем передачи сообщения на рабочей частоте полностью, за исключением последнего информационного пакета, а последний пакет каждого сообщения передают на одной из резервных частот, на приемной стороне по числу исправленных корректирующим кодом ошибок определяется степень пригодности данной резервной частоты на смену рабочей и, таким образом, резервные частоты расставляются в вариационный ряд, определяющий приоритеты в использовании частот. 1 ил.

 

Настоящее изобретение относится к области электрорадиотехники и может быть использовано в дуплексных и полудуплексных асинхронных системах передачи данных с каналом обратной связи.

В настоящее время известно много способов подстройки параметров системы передачи данных - изменение вида и параметров модуляции, изменение энергетических характеристик передачи, изменение вида и параметров кодовой конструкции. Одним из важных способов является также и изменение частоты передачи [1-3].

В существующих системах передачи данных [4] для определения лучшей частоты используется предварительное зондирование. Источник информации последовательно отправляет на каждой из возможных частот заранее подготовленный тестовый блок данных, известный на приемной стороне. При этом системы передачи данных на приемной и передающей сторонах должны перестраиваться с частоты на частоту абсолютно синхронно. Приемник информации производит оценку параметров канала связи на соответствующей частоте и по каналу обратной связи сообщает передающей стороне о качестве канала связи. После получения необходимой статистики по всему выделенному частотному ресурсу принимается решение о выборе рабочей частоты для передачи данных.

Недостатком прототипа в том, KB радиоканал является каналом с быстро изменяющимися параметрами и частота, полученная на этапе предварительного зондирования, может перестать быть наилучшей или даже вообще проходимой уже в процессе передачи данных.

В большинстве из существующих на сегодняшний день KB системах связи зондирование в процессе ведения связи не производится, что может привести к значительному снижению скорости передачи данных и, возможно, обрыву связи.

В некоторых системах связи для проведения зондирования прерывается процесс передачи данных. Следовательно, для дальнейшей передачи данных после зондирования необходимо решить ряд задач, необходимых для вхождения в связь, таких как обнаружение сигнала, подстройка по частотному сдвигу, установление тактовой и цикловой синхронизации. Зондирование и последующее вхождение в связь требуют значительных временных затрат и, как следствие, снижают информационную скорость передачи данных.

Целью изобретения является повышение надежности системы передачи данных за счет контроля за состоянием выделенного частотного ресурса, не снижающего информационной скорости передачи данных.

Поставленная цель достигается тем, что для определения пригодности резервной частоты на замену рабочей сообщение на рабочей частоте передают полностью, за исключением последнего информационного пакета, а последний пакет каждого сообщения передают на одной из резервных частот. На приемной стороне по числу исправленных корректирующим кодом ошибок определяется степень пригодности данной резервной частоты на смену рабочей и, таким образом, резервные частоты расставляются в вариационный ряд, определяющий приоритеты в использовании частот.

Функционирование такой системы может быть описано с помощью частотно-временной диаграммы, представленной на Фиг.1.

Пусть оптимальная частота в текущих сигнально-помеховых условиях, выбранная для передачи, имеет номер m. Тогда первые k-1 информационных блоков передаются на этой частоте. Далее источник и приемник информации синхронно меняют свои передающую и приемную частоты соответственно на частоту с номером m+1, на которой и передается информационный блок с номером k. Затем система передачи данных возвращается на свою оптимальную частоту и передает на ней следующую группу блоков (с k+1 no 2k-1). Для передачи информационного блока с номером 2k система переходит на частоту m+2 и так далее.

При этом необходимо отметить, что на зондируемых частотах передаются не заранее известные на приемной стороне тестовые блоки, не несущие информационной нагрузки, а обычные информационные блоки. Для того чтобы по этим блокам можно было оценить качество частоты, используемой для передачи, необходимо, чтобы они были закрыты помехоустойчивым кодом и циклической контрольной суммой CRC. После декодирования помехоустойчивого кода производится проверка по CRC. Если эта проверка обнаружила искажение информационного блока, значит по каналу обратной связи должна быть запрошена повторная передача этого блока, если же CRC не выявила искажения принятого информационного блока, то количественным показателем степени пригодности зондируемой частоты является количество исправленных помехоустойчивым кодом ошибок.

Таким образом, производится ранжирование всех выделенных для связи частот по количеству ошибок, внесенных каналом связи и исправленных помехоустойчивым кодом.

В случае ухудшения сигнально-помеховых условий на текущей рабочей частоте система передачи данных переходит на резервную частоту, наилучшую по результатам зондирования. Периодичность частотного зондирования, а как следствие, и количество информационных блоков k определяется исходя из длины интервалов замираний радиоканала и количества выделенных частот.

Таким образом, зондирование всех выделенных частот происходит в процессе передачи данных без снижения информационной скорости.

Литература

1. Гладанов Б.Б. Краткосрочное прогнозирование и надежность коротковолновой связи. М.: Электросвязь, 2000, №10.

2. Гладанов Б.Б. Краткосрочное прогнозирование в коротковолновой связи. М.: Электросвязь, 1999, №5.

3. Иванов В.А. и др. Прогнозирование и экстраполяция параметров КВ-радиоканала по данным наклонного зондирования ионосферы. М.: Радиотехник, 1997, №7.

4. Комарович В.Ф., Сосунов В.Н. Случайные радиопомехи и надежность KB связи. М.: «Связь», 1977.

Способ активного контроля рабочих частот, заключающийся в определении пригодности резервной частоты на замену рабочей, отличающийся тем, что сообщение на рабочей частоте передается полностью, за исключением последнего информационного пакета, а последний пакет каждого сообщения передают на одной из резервных частот, при этом на приемной стороне по числу исправленных корректирующим кодом ошибок определяется степень пригодности данной резервной частоты на смену рабочей, и, таким образом, резервные частоты расставляются в вариационный ряд, определяющий приоритеты в использовании частот.



 

Похожие патенты:

Изобретение относится к области автоматизированной контрольно-проверочной аппаратуры и может использоваться как аппаратура проверки работоспособности многоканальных систем связи и устройств управления авиационными средствами поражения (АСП) летательных аппаратов (ЛА) и их составных частей.

Изобретение относится к области анализа линий передачи. .

Изобретение относится к области связи и может быть использовано на сетях связи с линиями передачи на кабелях с медными жилами. .

Изобретение относится к области электротехники, в частности к способу прогнозирования электроизоляционных свойств композиционных материалов на длительный период времени во влажной среде.

Изобретение относится к области техники радиосвязи, конкретнее к измерению параметров радиоканалов ДКМВ диапазона, в первую очередь, их амплитудно частотных характеристик, и может быть использовано для мониторинга ионосферы и ионосферных каналов радиосвязи ДКМВ диапазона.

Изобретение относится к технике связи и может использоваться для автоматического управления режимами функционирования и обеспечения устойчивости средств связи и цифровой сети связи с каналами коллективного пользования.

Изобретение относится к электросвязи, а именно к оценке качества цифровых каналов (трактов) передачи, и может быть использовано для оперативного определения коэффициента ошибок на регенеративных участках цифровых каналов (трактах) передачи.

Изобретение относится к области радиотехники, а именно к области контроля технического состояния элементов сетей связи. .

Изобретение относится к электросвязи, а именно к оценке качества цифровых каналов передачи, и может быть использовано для оперативного определения коэффициента ошибок на регенеративных участках цифровых каналов передачи.

Изобретение относится к средствам определения качества сигнала в кабельных сетях

Изобретение относится к радиотехнике и может быть использовано при оценке систем связи с широкополосными сигналами. Технический результат заключается в повышении точности измерения защищенности сигнала от помех. В устройстве для измерения защищенности сигнала от помех взаимодействие сигнала и помехи в частотно-временной области оценивается с помощью коэффициента взаимной корреляции искаженного и эталонного сигналов g, а искажения сигнала, неизбежно возникающие при принятии мер по подавлению помехи в тракте приема, - с помощью коэффициента взаимной корреляции помехи и эталонного сигнала λ. В качестве комплексного показателя Ξ степени защищенности сигнала от помех (с учетом эффективности принимаемых мер по подавлению помех) предлагается использовать отношение указанных коэффициентов, т.e. Ξ = g λ . Чем больше воздействие помехи на сигнал, тем больше значение коэффициента взаимной корреляции помехи и эталонного сигнала λ, а следовательно, меньше значение комплексного показателя Ξ степени защищенности сигнала от помех. Подавление помехи в спектре сигнала приводит к уменьшению как знаменателя, так и числителя в выражении для Ξ , так как при этом растет отличие между искаженным и эталонным (опорным) сигналами. 1 ил.

Изобретение относится к технике электросвязи и может быть использовано для контроля качества дискретного канала связи. Технический результат заключается в повышении точности адаптации алгоритма прогнозирования ошибок в канале связи и уменьшении времени прогнозирования. Технический результат достигается за счет устройства для прогнозирования состояния дискретного канала связи, состоящего из блока выявления ошибок, счетчика ошибок, элемента ИЛИ, формирователя интервала времени, N-блоков прогнозирования, N-блоков памяти, N-блоков оценки прогноза, дешифратора, решающего блока, блока отображения. Новыми в устройстве для прогнозирования состояния дискретного канала связи являются элемент задержки, структура блока оценки прогноза, структура управляемого нелинейного элемента и совокупность новых связей. Предлагаемое устройство, по сравнению с известным, позволит повысить точность адаптации алгоритма и интервала времени прогнозирования. 2 з.п. ф-лы, 3 ил.
Наверх