Способ охлаждения полупроводниковых тепловыделяющих электронных компонентов через биметаллические термоэлектрические электроды

Изобретение относится к способам охлаждения и теплоотвода, например к способам охлаждения компьютерного процессора. Решение поставленной задачи заключается в том, что используются биметаллические электроды, место спая которых находится в непосредственном контакте с тепловыделяющим кристаллом, причем при пропускании тока через этот спай от первого биметаллического электрода ко второму биметаллическому электроду можно сформировать охлаждение на локальном участке тепловыделяющего кристалла. Конструкция термоэлектрических электродов представляет собой биметаллические проводники и разделенные диэлектриком и спаянные непосредственно над участком кристалла, предназначенным для охлаждения. Технический результат - повышение эффективности процесса охлаждения тепловыделяющих компонентов радиоэлектронной аппаратуры. 1 ил.

 

Изобретение относится к способам охлаждения и теплоотвода, например к способам охлаждения компьютерного процессора.

Традиционные методы охлаждения тепловыделяющих компонентов радиоэлектронной аппаратуры сталкиваются с проблемой отвода тепловой энергии непосредственно от кристалла электронного компонента [1]. Таким образом, от нагретого перехода полупроводникового прибора через тепловые сопротивления кристалла, подложки, электродов переносимое тепло формирует градиенты температур, способные привести к тепловому пробою. Кроме того, часть тепла выделяется не только в p-n переходах, но и на границе контакта металлического электрода и полупроводникового материала за счет термоэлектрических явлений.

Задача, на решение которой направлено изобретение, - создание способа, обеспечивающего улучшение процесса охлаждения и теплоотвода электронных компонентов.

Решение поставленной задачи заключается в том, что для повышения эффективности процесса охлаждения тепловыделяющих компонентов радиоэлектронной аппаратуры целесообразно использовать биметаллические электроды, место спая которых находится в непосредственном контакте с тепловыделяющим кристаллом, причем при пропускании тока через этот спай от первого металлического электрода ко второму металлическому электроду можно сформировать охлаждение на локальном участке тепловыделяющего кристалла.

На фиг.1 представлена конструкция термоэлектрических электродов в электронном компоненте, реализующая заявленный способ.

Конструкция термоэлектрических электродов представляет собой биметаллические проводники 1 и 2, разделенные диэлектриком 3 и спаянные непосредственно над участком кристалла, предназначенным для охлаждения. При пропускании тока через этот спай от первого металлического электрода 1 ко второму металлическому электроду 2 можно сформировать охлаждение на локальном участке тепловыделяющего кристалла 4. Причем применение отдельного независимого источника питания постоянного тока позволяет сохранить все рабочие режимы радиоэлектронного компонента, уменьшив тепловые нагрузки в зоне контакта биметаллического электрода 1, 2 с тепловыделяющим кристаллом 4. Наибольшего эффекта можно добиться в цифровой технике на основе транзисторной логики, у которой коллекторы и эмиттеры соединены либо с шиной питания, либо с шиной земля. Это позволяет реализовать биметаллические электроды таким образом, что они будут сгруппированы вокруг двух независимых источников питания, каждый из которых соединен со своей шиной. Непосредственное охлаждение каждого кристалла транзистора через наиболее тепловыделяющие электроды (коллектор, эмиттер) позволяет отводить тепло изнутри кристалла через шины питания наружу. При высокой степени интеграции это позволит охлаждать компьютерные процессоры и другие сверхбольшие интегральные схемы не только через корпус, а через биметаллические электроды 1, 2, охлаждающие спаи которых отводят тепло непосредственно от кристаллов 4 через биметаллические электроды 1, 2 при помощи электронов внутрь двух независимых источников питания, для которых перегрев уже не является таким критичным за счет их больших габаритов.

Применение термоэлектрических электродов позволит значительно повысить степень интеграции сверхбольших интегральных схем за счет облегчения тепловых режимов.

Литература

1. Исмаилов Т.А. Термоэлектрические полупроводниковые устройства и интенсификаторы теплопередачи. - СПб.: Политехника, 2005.

Способ охлаждения полупроводниковых тепловыделяющих электронных компонентов через биметаллические термоэлектрические электроды, состоящий в охлаждении электронных компонентов через термоэлектрические электроды, отличающийся тем, что электроды выполнены в виде биметаллических проводников и используется место спая биметаллических электродов, находящихся в непосредственном контакте с тепловыделяющим кристаллом, причем при пропускании тока через этот спай от первого металлического электрода ко второму металлическому электроду можно сформировать охлаждение на локальном участке тепловыделяющего кристалла.



 

Похожие патенты:

Изобретение относится к термоэлектрическому приборостроению, в частности к конструкциям термоэлектрических батарей (ТЭБ). .

Изобретение относится к термоэлектрическому приборостроению, в частности к конструкциям термоэлектрических батарей (ТЭБ). .

Изобретение относится к технологическим приемам решения задачи обеспечения электрической энергией потребностей собственных нужд (средства телемеханики, контрольно-измерительные приборы, освещение, охранно-пожарная сигнализация и т.д.) автономно функционирующих газоредуцирующих объектов магистральных газопроводов и газовых сетей низкого давления.

Изобретение относится к термоэлектрическому приборостроению, в частности к конструкциям термоэлектрических батарей (ТЭБ). .

Изобретение относится к термоэлектрическому приборостроению, в частности к конструкциям термоэлектрических батарей (ТЭБ). .

Изобретение относится к области медицины, может быть использовано в физиотерапии и косметологии. .

Изобретение относится к области медицины, может быть использовано в нейрохирургии для лечения травм и заболеваний спинного мозга. .

Изобретение относится к термоэлектрическому приборостроению, в частности к конструкциям термоэлектрических батарей (ТЭБ). .

Изобретение относится к термоэлектрическому приборостроению, в частности к конструкциям термоэлектрических батарей (ТЭБ). .

Изобретение относится к измерительной технике, более конкретно к устройству измерения перемещений, имеющих большое значение в робототехнике, прецизионных механизмах при эксплуатации сооружений и металлоконструкций и т.д.

Изобретение относится к области электроники, в частности к устройству отвода теплоты от кристалла полупроводниковой микросхемы, и может быть использовано для охлаждения кристаллов процессоров и полупроводниковых микросхем, выделяющих при работе тепловую энергию.

Изобретение относится к электронной технике и может быть использовано для монтажа и одновременно для отвода тепла от активных элементов как отдельных изделий электронной техники, так и радиоэлектронных устройств различного назначения.

Изобретение относится к устройствам для отвода тепла от электронных компонентов. .

Изобретение относится к электронике и может быть использовано в комплексе бортового оборудования летательных аппаратов при компоновке модулей, содержащих большое количество электрических связей.

Изобретение относится к области электротехники и может быть использовано для охлаждения тепловыделяющих элементов микропроцессорного устройства. .
Изобретение относится к области приборостроения, в частности к способу установки приборов на термостатируемых панелях космических аппаратов. .
Изобретение относится к криогенной технике и может быть использовано при проектировании и производстве электронных микросхем, требующих для обеспечения заданных технических эксплуатационных параметров поддержания рабочих температур как отдельных элементов в составе электронной микросхемы, так и целых функциональных блоков на криогенном уровне.

Изобретение относится к охлаждающим системам и может быть использовано для централизованного охлаждения различного рода устройств. .

Изобретение относится к устройствам для отвода тепла от электронных компонентов
Наверх