Способ релейной защиты энергообъекта

Использование: в области электротехники. Технический результат - расширение функциональных возможностей и универсализация способа. Способ заключается в том, что релейная защита энергообъекта осуществляется путем построения ее из групп модулей, объединенных внутри группы по схеме И, а групп между собой - по схеме ИЛИ, преобразования информации об энергообъекте в двумерные сигналы, отображаемые каждый на соответствующей плоскости, обучения модулей от имитационных моделей первого типа, воспроизводящих контролируемые режимы энергообъекта, и от имитационных моделей второго типа, воспроизводящих режимы, альтернативные контролируемым, при этом группы модулей обучают одну за другой в заданной последовательности, каждую группу - новым множеством режимов имитационных моделей первого типа, расширяющим по мере своего увеличения области срабатывания всех модулей обучаемой группы, и увеличивают каждое новое множество режимов до тех пор, пока не произойдет срабатывания обучаемой группы в каком-либо одном режиме из всего множества режимов имитационных моделей второго типа. 9 ил.

 

Изобретение относится к электроэнергетике и электротехнике и может быть использовано во всех видах защит, преимущественно микропроцессорных. Оно относится к тому направлению в релейной защите, основы которого были заложены изобретением [1], где впервые поставлена и решена задача объединения информации, поступающей из различных фаз наблюдаемого объекта. Актуальность технических решений, связанных с объединением информации, значительно возросла с появлением микропроцессорной техники. Изобретения [2, 3] решили задачу объединения априорной информации о наблюдаемом объекте с текущей информацией о двух режимах: первый режим короткого замыкания, второй - тот, что предшествовал короткому замыканию. Однако область применения этих технических решений была ограничена линиями передачи.

Более общее решение - способ релейной защиты произвольного энергообъекта [4], в котором удалось объединить априорную информацию об энергообъекте с наблюдаемыми величинами путем совместного преобразования в двумерные сигналы и задания характеристик защиты на плоскостях двумерных сигналов. Недостатком данного предложения стало предварительное разбиение плоскостей на ячейки, кодирование групп ячеек и выбивание тех кодов, при которых имеет место срабатывание в режимах, альтернативных контролируемым. Контролируемые режимы (α-режимы) - те, в которых защита призвана срабатывать. Альтернативные режимы (β-режимы) - те, срабатывание в которых означает нежелательное действие защиты. Как бы тщательно ни проводилось обучение защиты, нет гарантии, что не будет пропущен какой-либо из кодов срабатывания в альтернативном режиме, а это означает риск неселективного поведения защиты. Существует и бескодовый способ защиты, но опять-таки с ограниченным применением для линий электропередачи [5].

Дальнейшее развитие данного направления пошло по пути разделения функций срабатывания релейной защиты в контролируемых режимах и функций блокирования в альтернативных режимах [6], а также введения операции обучения реле - модулей микропроцессорной защиты [7]. Однако в перечисленных источниках новые технические операции еще не составляли единого целого.

Наиболее эффективен способ релейной защиты, представленный в [8]. Согласно ему релейная защита предстает в виде системы, обучаемой учителями - имитационными моделями защищаемого энергообъекта. Используются имитационные модели двух типов. Первые воспроизводят α-режимы. Вторые воспроизводят β-режимы, и тогда принимаются меры, предотвращающие срабатывание защиты. Релейная защита компонуется модулями двух типов: первые формируют сигнал на срабатывание, а вторые - на блокирование защиты. В обсуждаемом способе, являющемся прототипом нового технического решения, принципиальную роль играет разграничение модулей (реле) в соответствии с принимаемой с самого начала иерархией. Такая необходимость накладывает существенные ограничения на функциональные возможности способа, снижает его общность, делая менее универсальным, чем могло бы быть, если бы все модули одного типа, образующие единую группу, были равноправны и вносили свой предельно возможный вклад в распознавание аварийной ситуации на энергообъекте.

Цель изобретения заключается в расширении функциональных возможностей и универсализации способа релейной защиты энергообъекта.

Поставленная цель достигается тем, что в известный способ защиты энергообъекта путем построения ее из групп (семейств) модулей внесены принципиальные изменения в части его структуры и операций обучения модулей и групп в целом. Как и в прототипе, информация о состоянии энергообъекта преобразуется в двумерные сигналы. Каждый сигнал отображается на его уставочной плоскости. Группы модулей обучаются от разных имитационных моделей. Первые модели воспроизводят контролируемые режимы энергообъекта, например режимы короткого замыкания в контролируемой зоне. Вторые модели воспроизводят альтернативные режимы. Обучение защиты заключается в отображении множеств режимов на плоскостях двумерных сигналов и в определении границ областей отображений. Но в отличие от прототипа все модули обучаются параллельно, без разделения на основной и дополнительные. Модули обучаются нарастающим множеством контролируемых режимов при постоянной проверке, и в этом заключается весьма существенный признак изобретения, - всеми альтернативными режимами с тем, чтобы узнать, не вызывают ли они срабатывания всех без исключения модулей, входящих в группу. Выходы всех равноправных модулей группы объединены по схеме И, а выходы всех групп - по схеме ИЛИ.

Изобретение инвариантно по отношению к имитационным моделям и к диапазонам изменения варьируемых параметров.

На фиг.1 изображена структурная схема обучения группы модулей релейной защиты, осуществляемого от имитационных моделей контролируемых и альтернативных режимов. Контролируемые режимы задаются множеством значений варьируемых параметров Gα, а альтернативные режимы - областью Gβ значений параметров соответствующей модели. На фиг.2 показана структурная схема, реализующая предлагаемый способ релейной защиты. Вектор z=[z1,z2,…zn]T обозначает замер, т.е. совокупность двумерных сигналов z1, z2, … zn, поступающих на измерительные органы (модули) релейной защиты. Фиг.3-8 иллюстрируют операции обучения одной из групп модулей. Группе присвоен верхний индекс «k», рядом с которым указываются номера этапов обучения, начиная с первого (фиг.3) и вплоть до пятого (фиг.8). Фиг.9 иллюстрирует заключительную операцию задания уставочных областей (областей срабатывания) релейной защиты.

Далее используются следующие понятия, обозначения и сокращения:

x - вектор варьируемых параметров имитационной модели;

z - вектор замера, который поступает на модули (измерительные органы) релейной защиты;

α - символ контролируемых режимов, реагировать на которые призвана релейная защита;

β - символ альтернативных режимов, на которые реагировать не следует;

xα - вектор параметров модели контролируемых режимов;

xβ - вектор параметров модели альтернативных режимов;

zi - i-ый двумерный сигнал;

Fi - оператор преобразования режима x имитационной модели в сигнал zi;

Gα - область определения вектора xα или множество α-режимов;

Gβ - область определения вектора xβ или множество β-режимов;

- область α-режимов при обучении k-той группы модулей на l-ом этапе;

Sαi - область отображения множества α-режимов на плоскости сигнала zi;

- область срабатывания i-го модуля k-ой группы реле на l-ом этапе обучения; так же обозначается и сам упомянутый модуль;

- уставочная область i-го модуля k-ой группы, задаваемая по результатам обучения;

ESi - обозначение операции обучения i-го модуля релейной защиты, состоящей в преобразовании области G в область срабатывания Si;

Схема, иллюстрирующая процедуру обучения релейной защиты, состоит из имитационной модели контролируемых режимов 1 с варьируемой областью изменения параметров Gα, преобразователей 2, 3, реализующих операции Fαi(xα)=zαi, , обучающих блоков 4, 5, которые выполняют техническую операцию триангуляции (окаймления) множества точек zαi, образующих плоскость Sαi, и группу модулей 6-7, представляющих собой реле с плоской областью срабатывания Sαi. В ту же схему входит имитационная модель альтернативных режимов 8 с неизменной областью изменения параметров Gβ, преобразователей 9, 10, реализующих операции Fβi(xβ)=zβi, , модулей 11, 12, идентичных соответственно модулям 6 и 7, и элемента И 13, выходной сигнал которого запрещает наращивание области Gα имитационной модели 1, а также приостанавливает действие обучающих блоков 4, 6, изменяющих области срабатывания Sαi.

По завершению обучения формируется структура защиты (фиг.2) в составе p групп модулей 14, 15; 16; 17; 18, 19, объединяемых каждая операцией И 20-22, а все вместе -оконечной операцией ИЛИ 23.

Диаграммы на фиг.3-8 иллюстрируют процедуру обучения k-ой группы модулей релейной защиты. Процедура совершается с использованием объектного пространства α-режимов 24, объектного пространства β-режимов 25 и n уставочных плоскостей, из которых на фиг.3-8 показаны только первая плоскость 26 и последняя (n-ая) плоскость 27. На фиг.3-8 принято, что процедура обучения состоит из пяти этапов. Каждый совершается в схеме по фиг.1 и лишь по завершению всех этапов компонуется структура защиты по схеме фиг.2.

Область определения параметров имитационной модели α-режимов 1 на каждом этапе изменяет свои размеры, на первом-четвертом этапах она расширяется (фиг.3-6), а на заключительном пятом этапе - несколько сокращается. Фиг.7 служит важным дополнением фиг.6, поясняющим физический смысл явлений, происходящих на четвертом этапе.

Область Gβ определения параметров имитационной модели β-режимов не зависит от событий в пространстве α-режимов 24, поэтому пространство β-режимов 25 показано лишь на фиг.3 и 8, а на других иллюстрациях о присутствии области Gβ свидетельствуют линии с обозначениями Fβi - операторами преобразования режимов хβ в замеры zβi на плоскостях 26, 27.

Каждому из перечисленных этапов обучения релейной защиты отвечают характерные ситуации в отображениях α- и β-режимов на уставочных плоскостях. Рассмотрим их по порядку.

Этап 1 (фиг.3). Выбирается относительно небольшое множество α-режимов имитационной модели 1. Преобразователи 2, 3 формируют замеры zαi, обучающие модули 4, 5 отображают их на плоскостях 26, 27 в виде областей модулей 6, 7 обучаемой k-ой группы реле.

Имитационная модель 8 β-режимов генерирует заданное множество режимов Gβ. Преобразователи 9, 10 отображают его на плоскостях 26, 27 областями Sβ1, Sβn, возможно, бесконечных размеров, как это показано на фиг.3 и далее на фиг.4-6.

Области и Sβ1, а также и Sβn, в данном случае не пересекаются (фиг.3), следовательно, все множество режимов распознаваемо на любой из уставочных плоскостей. В схеме обучения по фиг.1 все модули 11, 12 не срабатывают, и процедура наращивания множества режимов не приостанавливается.

Этап 2 (фиг.4). Множество α-режимов увеличивается до размера настолько, что увеличившиеся отображения на части уставочных плоскостей, но не на всех, начинают пересекаться с неизменившимися отображениями β-режимов Sβi. На фиг.4 эта ситуация затрагивает плоскость 26, но не проявляется на плоскости 27. Как следствие, отдельно взятая плоскость 26 отныне не способна защищать объект в заданной части пространства 24. Однако схема обучения по фиг.1 построена таким образом, что это явление не сказывается на проводимой процедуре. Дело в том, что хотя модуль 11 и сработает, но не сработает модуль 12, а следовательно, и схема И 13. Не получив блокирующего сигнала от схемы И 13, имитационная модель 1 и обучающие блоки 4, 5 продолжают процедуру наращивания множества режимов .

Этап 3 (фиг.5). Множество получает приращение до величины , настолько большой, что все увеличившиеся области входят в пересечение с неизменными областями отображений β-режимов Sβi. На фиг.5, как ранее на фиг.4, обозначение относится к тем β-режимам, которые вызывают срабатывание модуля 11. Новое обозначение отмечает β-режимы, вызывающие срабатывание модуля 12. Благодаря присутствию схемы И 13 дальнейшее зависит от того, относятся ли режимы и к одному и тому же или к разным подмножествам β-режимов. В данном случае полагается, что это разные подмножества. В такой ситуации схема И 13 не срабатывает, и процедура наращивания множества режимов не приостанавливается.

Этап 4 (фиг.6). Этот этап связан с эффектом перерегулирования, возможным в ходе обучения релейной защиты. Имеется в виду, что множество получает приращение до такой величины , что ее отображения и на плоскостях 26, 27 входят в столь значительное пересечение с отображениями β-режимов, что некоторые режимы xβ одновременно отображаются и в , и в . Как следствие, в структурной схеме по фиг.1 одновременно срабатывают все модули 11, 12, вслед на ними - элемент И 13, который своим выходным сигналом воздействует на имитационную модель α-режимов 1 и обучающие модули 4, 5, не только приостанавливая дальнейшее расширение множества режимов и областей , но и предусматривая возможность их некоторого сокращения.

Сокращению предшествует определение взаимных областей α- и β-режимов (фиг.7), в которых располагаются отображения только тех режимов xβ, которые попадают во все без исключения области . Режимы и , не отвечающие этому условию (фиг.6), в формировании взаимных областей участия не принимают.

Этап 5 (фиг.8). Множество α-режимов сокращается до размера , промежуточного между ним и предыдущим множеством . Критерий сокращения - уменьшение взаимных областей до минимально возможного размера - одной точки. На фиг.8 эта точка zβ1 области , представляющая собой замер некоторого граничного β-режима хβгр, отображаемого, разумеется, не только на первой уставочной плоскости, но и на всех остальных плоскостях: zβi=Fβi(xβгр). Однако в рассматриваемом граничном случае только одно из отображений (на фиг.8 это zβ1) располагается на границе области (на фиг.8 это ); прочие отображения могут располагаться как на границах, так и внутри других областей (на фиг.8 это ).

На этом заключительном этапе определяются области срабатывания модулей 6, 7 и идентичных им 11, 12, для чего из областей исключаются малые взаимные области . Итогом становятся уставочные области и множество распознаваемых k-ой группой модулей α-режимов (фиг.9).

Структурная схема защиты составляется из групп модулей, прошедших каждая все этапы обучения (фиг.2). Группы различаются областями . Защита срабатывает, если входные двумерные сигналы zi вызывают одновременные срабатывания всех модулей хотя бы одной из n групп.

Достоинством предлагаемого способа следует считать отсутствие в его структуре (фиг.2) блокирующих операций и возможность задавать обучающие множества α-режимов в окрестности наиболее опасных состояний защищаемого объекта, таких как замыкание на шинах, металлические замыкания, замыкания на фоне максимальной передачи мощности. После того как срабатывание в подобных режимах будет обеспечено, остальные множества выбираются с целью повышения чувствительности защиты до предельно возможного уровня.

Источники информации

1. Авторское свидетельство №66343, кл. H02H 3/28, 1944.

2. Патент РФ №2066511, кл. H02H 3/40, G01R 31/08, 1992.

3. Патент РФ №2149489, кл. H02H 3/40, G01R 31/08, 1999.

4. Патент РФ №2247456, кл. H02H 3/40, 2002.

5. Патент РФ №2248077, кл. H02H 3/40, 2002.

6. Патент РФ №2316780, кл. G01R 31/08, H02H 3/40, 2006.

7. Патент РФ №2316871, кл. H02H 3/40, 2006.

8. Патент РФ №2316872, кл. H02H 3/40, 2006.

Способ релейной защиты энергообъекта путем построения ее из групп модулей, объединенных внутри группы по схеме И, а групп между собой - по схеме ИЛИ, преобразования информации об энергообъекте в двумерные сигналы, отображаемые каждый на соответствующей плоскости, обучения модулей от имитационных моделей первого типа, воспроизводящих контролируемые режимы энергообъекта, и от имитационных моделей второго типа, воспроизводящих режимы, альтернативные контролируемым, отличающийся тем, что, с целью расширения функциональных возможностей, обучают группы модулей одну за другой в заданной последовательности, каждую группу - новым множеством режимов имитационных моделей первого типа, расширяющим по мере своего увеличения области срабатывания всех модулей обучаемой группы, и увеличивают каждое новое множество режимов до тех пор, пока ни произойдет срабатывания обучаемой группы в каком-либо одном режиме из всего множества режимов имитационных моделей второго типа.



 

Похожие патенты:

Изобретение относится к электротехнике, в частности к способам защиты линий электропередачи (ЛЭП), основанным на дистанционном принципе. .

Изобретение относится к области электротехники и может быть использовано в системах релейной защиты и автоматики электрических систем. .

Изобретение относится к области электротехники, а именно к входящему в структуру релейной защиты объекта электротехнического назначения, например линии электропередачи W системы электроснабжения синусоидального переменного тока с частотой f (период Т=1/f)) времяимпульсному измерительному органу релейной защиты с двумя подведенными к нему электрическими величинами, одна из которых определяется действующим значением Iw синусоидального тока, протекающего в объекте электротехнического назначения, а другая определяется действующим значением Uw синусоидального напряжения на этом объекте, при этом времяимпульсный измерительный орган релейной защиты функционирует как времяимпульсный омметр релейной защиты, измерительная часть которого содержит компаратор с двумя входами и одним выходом, на котором при возникновении короткого замыкания на контролируемом релейной защитой электротехническом объекте генерируется выходной электрический сигнал uвых1 в виде периодической последовательности прямоугольных импульсов напряжения, длительность t1 импульсов которых косвенно связана с электрической удаленностью места короткого замыкания, определяемой модулем zw.кз=Uw.кз/Iw.кз входного сопротивления, например, линии электропередачи W при коротком замыкании на ней, т.е.

Изобретение относится к области электротехники и электроэнергетики и может быть использовано во всех видах защит, преимущественно микропроцессорных. .

Изобретение относится к релейной защите электрических систем или любых иных энергообъектов. .

Изобретение относится к области электротехники и электроэнергетики и связано с обучением релейной защиты. .

Изобретение относится к электротехнике и электроэнергетике, конкретно к релейной защите, и может быть применено вне зависимости от состава информационной базы защиты и вида энергообъектов.

Изобретение относится к электрической защите энергосистемы, а именно к способу электрической защиты линии электропередачи (ЛЭП) на дистанционном принципе действия.

Изобретение относится к релейной защите и автоматике электрических систем. .

Изобретение относится к электроэнергетике и электротехнике, а именно к релейной защите и автоматике электроэнергетических систем

Изобретение относится к электротехнике, в частности к релейной защите магистральных и распределительных электрических сетей

Изобретение из области электроэнергетики касается построения микропроцессорной релейной защиты, а именно этапов ее обучения, задания характеристики срабатывания и функционирования в рабочем режиме. Обучение осуществляется от имитационных моделей защищаемого объекта. Входные величины защиты преобразуют в двумерный сигнал, отображаемый на плоскости. Обучающие двумерные сигналы определяют область срабатывания защиты. Технический результат - повышение чувствительности защиты путем полного учета особенностей области срабатывания. Предлагается задавать характеристику в виде последовательных граничных двумерных сигналов, охватывающих область срабатывания защиты. Изобретение указывает операции, задающие условия срабатывания защиты, если характеристика срабатывания носит дискретную форму, т.е. состоит из отдельных точек на плоскости. Текущий двумерный сигнал, поступающий от реального объекта, сравнивают с четырьмя типами граничных сигналов, располагающихся на плоскости соответственно выше, ниже, правее и левее текущего сигнала. В дополнительных пунктах формулы изобретения раскрываются модификации условий срабатывания. В первой модификации ограничиваются только одним граничным сигналом каждого из четырех типов, а во второй - двумя, т.е. четырьмя парами сигналов, и каждая пара задает свою уставку срабатывания по своему направлению. 2 з.п. ф-лы, 5 ил.

Использование: в области электроэнергетики. Технический результат - повышение точности. Согласно способу составляют модели двух частей фидера, первой - от места наблюдения до места предполагаемого замыкания и второй - от места предполагаемого замыкания до конца фидера, первую часть фидера моделируют по прямой и по нулевой последовательности, а вторую - только по нулевой последовательности, преобразуют в модели прямой последовательности безнулевые составляющие зафиксированных тока и напряжения поврежденной фазы в безнулевую составляющую напряжения поврежденной фазы в месте предполагаемого замыкания, преобразуют в модели нулевой последовательности первой части фидера нулевые составляющие зафиксированных токов и напряжений в напряжение нулевой последовательности в месте предполагаемого замыкания и в ток нулевой последовательности до этого места, суммируют два упомянутых напряжения, формируя напряжение поврежденной фазы в месте предполагаемого замыкания, подают напряжение нулевой последовательности в месте предполагаемого замыкания на вход модели нулевой последовательности второй части фидера и фиксируют ток на ее входе, который вычитают из тока нулевой последовательности до этого места, формируя ток предполагаемого замыкания, перемножают напряжение и ток в месте предполагаемого замыкания, формируя сигнал мгновенной мощности предполагаемого места замыкания, определяют знак этого сигнала и фиксируют реальное замыкание в том месте, где упомянутый сигнал в процессе своего изменения остается неотрицательным. 10 ил.

Использование: в области электротехники. Технический результат - повышение устойчивости функционирования дистанционной защиты. Согласно способу измеряют активное и реактивное сопротивления до места короткого замыкания по аварийным значениям тока, напряжения угла сдвига между ними в момент возникновения напряжения. Сравнивают с уставками расстояние между местом установки защиты и местом короткого замыкания, определяемое на основе взвешенного усреднения оценок расстояния, получаемых с учетом измерений активного и реактивного сопротивлений. При плавном изменении параметров режима работы линии блокируют действие защиты до возврата защиты при восстановлении короткого режима работы линии электропередачи. Изменение параметров режима фиксируют по изменениям значения знака расстояния между местом установки защиты и местом короткого замыкания. Дополнительно по аварийным значениям тока, напряжения и угла сдвига между ними производят, по меньшей мере, одну процедуру определения места повреждения линии электропередачи с получением оценок расстояния до места короткого замыкания. Включают во взвешенное усреднение оценок полученную оценку или оценки расстояния между местом установки защиты и местом короткого замыкания. 1 ил.

Использование: в области электротехники. Технический результат - повышение надежности защиты. Предлагаемый способ основан на симбиозе прямой и косвенной адаптации. Согласно способу применяется три типа сигналов и, соответственно, три разнотипных групп аналогичных реле, а также групп исполнительных реле, в которые входят по одному представителю от каждой группы аналогичных реле. Проводят операции обучения реле второго типа, реагирующих на величины текущего режима, и реле третьего типа, реагирующих на виртуальные величины, формируемые с участием аварийных составляющих токов. Реле первого типа обучению не подлежат. Их характеристики задаются жестко, путем разбиения на части области отображения замеров, формируемых из величин предшествующего режима. При этом реле первого типа управляют процессом обучения реле второго и третьего типа, входящих в одну с ним исполнительную группу. 5 з.п. ф-лы, 6 ил.

Использование: в области электротехники. Технический результат - повышение точности определения ортогональных составляющих гармоники периодического сигнала при обработке электрической величины с высокой частотой дискретизации. Согласно способу из измерений электрической величины составляют равномерно сдвинутые во времени сигналы с децимированными отсчетами с одинаковым шагом децимации с таким расчетом, чтобы наложение всех децимированных сигналов на одну временную ось давало измерения электрической величины. Затем каждый децимированный сигнал преобразуют в ортогональные составляющие оцениваемой гармоники с помощью двухканального ортогонального фильтра. Ортогональные значения оцениваемой гармоники получают, накладывая отсчеты одноименных ортогональных составляющих децимированных сигналов на временную ось соответствующей ортогональной составляющей оцениваемой гармоники. 6 ил.

Использование: в области электротехники. Технический результат - повышение чувствительности дистанционной защиты. Устройство для дистанционной защиты линии электропередачи содержит измерительный орган сопротивления, выход которого подключен к входу органа выдержки времени, соединенного с входом исполнительного органа, выход которого является выходом устройства. Дополнительно содержит канал связи между подстанциями по концам линии, устройство передачи сигналов по каналу связи, устройство приема сигналов от канала связи, два сумматора, причем второй вход второго сумматора является инвертирующим, и преобразователь тока в напряжение. Вход устройства передачи сигналов подключен к трансформатору тока противоположного конца линии, а выход связан с входом канала связи, выход которого связан с входом устройства приема сигналов, соединенного выходом со вторым входом первого сумматора, первый вход которого подключен к трансформатору тока линии в месте установки защиты, к которому также подключен вход преобразователя тока в напряжение, выход которого связан со вторым входом второго сумматора, первый вход которого подключен к трансформатору напряжения системы шин в месте установки защиты, выход первого сумматора подключен к токовому входу измерительного органа сопротивления, а выход второго сумматора подключен к входу напряжения измерительного органа сопротивления. 1 ил.

Использование: в области электроэнергетики. Технический результат - повышение быстродействия релейной защиты. Данный способ обнаруживает аварийные режимы объекта, отличающиеся друг от друга по времени распознавания. Делается это с привлечением имитационных моделей контролируемого объекта. Моделируются два типа взаимно противостоящих режимов: первый - короткие замыкания в защищаемой зоне; второй - все прочие режимы, когда срабатывание защиты запрещается. Имитационные модели подают на релейную защиту токи и напряжения в режимах обоих типов и тем самым проводят обучение релейной защиты. Электрические величины представляют в дискретной форме. Отсчеты величин режима короткого замыкания преобразуют в промежуточные текущие величины. Преобразование совершается в нарастающем окне наблюдения на каждом шаге увеличения окна. Из промежуточных величин формируют текущий замер. Обучение выполняют на каждом шаге, получая столько характеристик срабатывания, сколько шагов, начиная со второго, предусмотрено для обучения защиты. Для дистанционной защиты линий электропередачи промежуточными величинами являются комплексные сигналы, изменяющиеся с каждым шагом наблюдения. В рамках предлагаемого способа дана реализация фильтра ортогональных составляющих, формирующего текущие комплексные сигналы. Частным случаем этого фильтра, работающего на произвольном окне наблюдения, является широко применяемый фильтр Фурье, для которого окно наблюдения кратно полупериоду частоты сети. 1 з.п. ф-лы, 3 ил.

Использование: в области электроэнергетики. Технический результат - расширение функциональных возможностей способа путем обеспечения защиты любых энергообъектов с моделями любого типа и с произвольным объемом наблюдения объекта. Согласно способу входы объекта соответствуют входам модели. Чтобы активировать модель, на ее входы необходимо подать одну из наблюдаемых на соответствующем входе объекта величин. Наблюдению подлежат все входы и выходы, но необязательно полностью. Полному наблюдению подлежит как минимум один вход. Таким образом, наблюдение осуществляется «с избытком». Все входы и выходы разделяются на три группы. В первую группу включаются полностью наблюдаемые входы и выходы. Во вторую - наблюдаемые только по напряжению, в третью - только по току. Модель объекта активируется путем воздействия на первые и вторые входы и выходы модели источниками наблюдаемых напряжений, на третьи - источниками наблюдаемых токов. Определяют реакцию активированной модели на приложенные воздействия, причем в качестве реакции выделяют только токи первых входов и выходов модели. Определяют разностные сигналы как разности между токами, наблюдаемыми на первых входах и выходах объекта и соответствующими реакциями модели. Характеристики срабатывания защиты задают на основе замеров, формируемых с участием разностных сигналов. 9 ил.
Наверх