Способ форсирования по тяге жидкостного ракетного двигателя и жидкостный ракетный двигатель

Изобретение относится к области ракетного двигателестроения, ориентированного на космические транспортные системы. Способ форсирования по тяге жидкостного ракетного двигателя, включающий газовую турбину, приводимую в действие паром одного из компонентов топлива, образованным в охлаждающем тракте камеры сгорания, основанный на увеличении температуры газа перед турбиной, при этом в поток пара перед подачей его на турбину впрыскивают дозированное количество другого компонента топлива и поджигают образовавшуюся топливную смесь. Жидкостный ракетный двигатель для реализации способа содержит камеру сгорания с трактом охлаждения и форсуночной головкой, насос горючего, насос окислителя и турбину, сообщенную входом с охлаждаемым трактом камеры сгорания, согласно изобретению в трубопровод, соединяющий тракт охлаждения камеры и турбину, вмонтировано устройство, содержащее диффузор и форсунку. Устройство содержит воспламенитель и стабилизатор пламени. Изобретение обеспечивает расширение диапазона форсирования по тяге при одновременном увеличении мощности турбины. 2 з.п. ф-лы, 1 ил.

 

Предлагаемое изобретение относится к области ракетного двигателестроения, ориентированного на космические транспортные системы.

Одним из требований, предъявляемых к жидкостному ракетному двигателю (ЖРД), является требование по обеспечению возможности управления величиной тяги в процессе полета ракеты, в том числе, в сторону ее увеличения (т.е. форсирования). Реализация процесса изменения тяги ЖРД происходит через изменение расхода топлива через камеру сгорания, которое, в свою очередь, достигается изменением давления подачи топлива. Последнее достигается для ЖРД, оснащенных турбонасосной системой подачи топлива, посредством изменения частоты вращения ротора турбонасосного агрегата (ТНА) за счет изменения мощности турбины.

Известны два способа изменения мощности турбины ТНА при регулировании тяги ЖРД: путем изменения температуры газа перед турбиной и путем изменения массового расхода газа.

По первому способу обычно управляются двигатели, имеющие в своем составе двухкомпонентный газогенератор для выработки рабочего тела турбины (см. схему в книге Т.М.Мелькумова и др. «Ракетные двигатели», М.: «Машиностроение», 1968, стр.11, рис.1.5), а по второй схеме - двигатели, у которых рабочее тело турбины вырабатывается путем испарения и нагрева одного из компонентов ракетного топлива в охлаждающем тракте (рубашке) камеры сгорания (см. схему американского ЖРД РЛ-10 (RL-10), энциклопедия «Космонавтика», М.: «Советская энциклопедия», 1985, стр.337 - прототип).

Предлагаемый новый способ форсирования ЖРД по тяге применим к ЖРД, у которых рабочее тело турбины (или одной из турбин, например, ЖРД по патенту РФ №2352804 - прототип) вырабатывается путем испарения одного из компонентов ракетного топлива. Особенностью ЖРД, принятого за прототип, является то, что температура паров испарившегося в рубашке камеры сгорания компонента топлива, формируемая детерминированной величиной теплосъема (при фиксированном сочетании площади теплоотдающей поверхности и массового расхода компонента топлива через охлаждающий тракт), невелика (450-500К). Эта температура значительно ниже допустимого уровня по условию обеспечения работоспособности турбины (до 1200К) и, что существенно, не поддается изменению в процессе работы двигателя простыми средствами регулирования. В силу сказанного расходный способ регулирования мощности такой турбины (посредством регулирования перепуска части газа мимо турбины) является вынужденным и, практически, единственным доступным способом. Отсюда вытекают и недостатки этого способа: снижение номинальной мощности турбины (пропорционально доле перепускаемого мимо турбины газа) и невозможность реализации высокого уровня форсирования в случае

возникновения аварийной ситуации при старте или полете ракеты (например, при отказе одного двигателя в четырехдвигательной установке при старте ракеты для экстренного увода последней от стартовых сооружений необходимо форсирование каждого из оставшихся трех двигателей до уровня 133% номинальной тяги).

Целью данного изобретения является существенное расширение диапазона форсирования по тяге жидкостного ракетного двигателя при одновременном увеличении номинальной мощности турбины.

Данная цель достигается тем, что способ форсирования по тяге жидкостного ракетного двигателя, содержащего газовую турбину, приводимую в действие паром одного из компонентов топлива, образованным в охлаждающем тракте камеры сгорания, основанный на увеличении температуры газа перед турбиной, согласно изобретению в поток пара перед подачей его на турбину впрыскивают дозированное количество другого компонента топлива и поджигают образовавшуюся топливную смесь.

При этом становится возможным исключить на номинальном режиме работы двигателя паразитный перепуск части газа мимо турбины, а также существенно расширить диапазон форсирования за счет увеличения верхней границы температуры газа перед турбиной - до 1200К вместо (450-500)К. Последнее преимущество реализуется и для двигателей, у которых имеется две турбины, одна из которых питается газом, вырабатываемым двухкомпонентным газогенератором, а другая - паром одного из компонентов топлива (например, ЖРД по патенту №2352804).

Данный способ особенно легко и эффективно может быть реализован в жидкостном ракетном двигателе, содержащем камеру сгорания с трактом охлаждения и форсуночной головкой, насос горючего, насос окислителя и турбину, сообщенную входом с охлаждаемым трактом камеры сгорания, при этом в трубопровод, соединяющий тракт охлаждения камеры и турбину, вмонтировано устройство, содержащее диффузор и форсунку. Устройство содержит воспламенитель и стабилизатор пламени, у которого в соответствии с принципиальной схемой имеется возможность отбора и впрыска второго компонента без необходимости применения дополнительного насоса для повышения напора впрыскиваемого компонента (например, на двигателе по патенту №2352804). Суть предлагаемого способа и его реализации на двигателе иллюстрируется схемой на фиг.1, где приняты следующие обозначения:

1 - магистраль подвода окислителя;

2 - магистраль подвода горючего;

3 - насос окислителя;

4 - насос горючего;

5 - турбина окислительная;

6 - турбина восстановительная;

7 - газогенератор окислительный;

8 - регулятор расхода горючего в газогенератор;

9 - дроссель горючего;

10 - камера сгорания;

11 - трубопровод подачи пара горючего на восстановительную турбину;

12 - диффузор;

13 - форсунка (распылитель);

14 - стабилизатор пламени;

15 - воспламенитель;

16 - трубопровод отбора окислительного газа для впрыска в поток пара горючего;

17 - клапан пуско-отсечной.

Работа двигателя с использованием предлагаемого способа форсирования происходит следующим образом.

После запуска двигатель работает на основном режиме и может регулироваться по соотношению компонентов с помощью дросселя 9, а также по тяге в небольшом диапазоне с помощью регулятора расхода 8 путем изменения соотношения компонентов в газогенераторе 7, которое, в свою очередь, изменяет температуру газа, подаваемого на окислительную турбину 5. Поскольку турбина 5 работает на газе с большим содержанием свободного кислорода, существует, исходя из опасности возгорания элементов конструкции турбины и трубопроводов, ограничение по максимальной температуре газа (обычно на уровне 850-900К). В связи с этим диапазон возможного форсирования двигателя с помощью регулятора 8 ограничен указанной температурой. При форсировании тяги до предельно высокого уровня открывается клапан 17, и окислительный газ по трубопроводу 16 поступает в устройство (форсажную камеру), установленное в трубопроводе 11, где, распыляясь в диффузоре 12 с помощью форсунки 13, смешивается с парами горючего, образуя топливную смесь, которая самовоспламеняется либо принудительно поджигается с помощью воспламенителя 15. Пламя стабилизируется с помощью стабилизатора пламени 14. Производительность форсунки 13 настраивается на определенный расход окислительного газа, исходя из необходимости получения нужного приращения мощности турбины 6 при форсировании. При необходимости прекращения форсирования отсекают подачу компонента через трубопровод 16 закрытием клапана 17. Двигатель возвращается на исходный режим работы.

При необходимости использования жидкого окислителя для реализации данного способа форсирования трубопровод 16 вместо подключения к выходному патрубку газогенератора 7 подключают к трубопроводу после насоса окислителя 3. Таким образом, относительно простыми конструктивными средствами по-новому решается задача форсирования тяги ЖРД с приобретением положительного эффекта - существенного расширения диапазона возможного форсирования по отношению к прототипу при одновременном увеличении номинальной мощности турбин. Использование данного изобретения позволит повысить безопасность ракет-носителей на старте и в полете за счет реализации идеологии горячего резервирования тяги многоблочной двигательной установки (эта идеология предполагает высокий уровень форсирования исправно работающих двигателей при отказе одного или нескольких двигателей).

1. Способ форсирования по тяге жидкостного ракетного двигателя, содержащего газовую турбину, приводимую в действие паром одного из компонентов топлива, образованным в охлаждающем тракте камеры сгорания, основанный на увеличении температуры газа перед турбиной, отличающийся тем, что в поток пара перед подачей его на турбину впрыскивают дозированное количество другого компонента топлива и поджигают образовавшуюся топливную смесь.

2. Жидкостный ракетный двигатель для реализации способа по п.1, содержащий камеру сгорания с трактом охлаждения и форсуночной головкой, насос горючего, насос окислителя и турбину, сообщенную входом с охлаждаемым трактом камеры сгорания, отличающийся тем, что в трубопровод, соединяющий тракт охлаждения камеры и турбину, вмонтировано устройство, содержащее диффузор и форсунку.

3. Жидкостный ракетный двигатель по п.2, отличающийся тем, что вмонтированное в трубопровод, соединяющий тракт охлаждения камеры и турбину, устройство содержит воспламенитель и стабилизатор пламени.



 

Похожие патенты:

Изобретение относится к жидкостным ракетным двигателям (ЖРД). .

Изобретение относится к области ракетной техники и предназначено для регулирования режима работы жидкостной ракетной двигательной установки (ЖРДУ). .

Изобретение относится к эксплуатируемой преимущественно в условиях космического вакуума измерительной технике, предназначенной для определения расхода рабочего тела (ксенона), подаваемого из баков реактивных двигательных установок космических аппаратов.

Изобретение относится к клапану регулирования тяги со снижением коэффициента усиления, предназначенному для использования в ракетном двигателе. .

Изобретение относится к ракетной технике и предназначено для регулирования тяги и соотношения компонентов топлива жидкостного ракетного двигателя. .

Изобретение относится к ракетному двигателестроению и может быть использовано в авиадвигателестроении. .

Изобретение относится к области ракетной техники и предназначено для регулирования режима работы жидкостной ракетной двигательной установкой (ЖРДУ) с помощью вычислительных устройств.

Изобретение относится к машиностроению и может быть использовано при создании устройств для регулирования режима работы жидкостных ракетных двигателей и других энергетических установок.

Изобретение относится к области ракетной техники и предназначено для регулирования режима работы жидкостной ракетной двигательной установки. Способ регулирования режима работы жидкостной ракетной двигательной установки заключается в изменении проходного сечения органа, регулирующего расход газа наддува в зависимости от кавитационного запаса давления насосов турбонасосного агрегата, измерении параметров двигателя и определении их производных по времени. Изменение проходного сечения органа, регулирующего расход газа наддува, устанавливают по величине производной изменения давления и температуры на входе в двигатель. Изобретение обеспечивает повышение точности регулирования, а также сокращение непроизводительных энергетических затрат за счет снижения величины давления в баках ракеты. 1 ил.

Изобретение относится к ракетным двигателям. Турбонасос, в котором импеллер насоса соединен с одним концом вращающегося вала, а турбина соединена с другим концом вращающегося вала. Турбонасос выполнен так, что эквивалентная область между кривой КПД турбины, полученной на основе условного выражения, в котором число оборотов вращающегося вала поддерживается постоянным независимо от скорости потока насоса, и кривой КПД турбины реальной машины, становится рабочей областью. Рассмотрен ракетный двигатель, использующий турбонасос, который выполнен так, что эквивалентная область между кривой КПД турбины, полученной на основе условного выражения, в котором число оборотов вращающегося вала поддерживается постоянным независимо от скорости потока насоса, и кривой КПД турбины реальной машины, становится рабочей областью. Изобретение обеспечивает уменьшение момента инерции турбонасоса и улучшает быстроту реагирования ракетного двигателя турбонасосного типа. 2 н. и 3 з.п. ф-лы, 10 ил.

Изобретение относится к области ракетного двигателестроения, ориентированного на космические транспортные системы. Способ форсирования тяги ЖРД, основанный на изменении энергетических параметров функционирования, согласно изобретению форсирование осуществляют путем подачи части газа из газового тракта как минимум одного из компонентов топлива, или генераторного газа, или их смеси, по крайней мере, на одну дополнительную турбину, взаимодействующую, по крайней мере, с одним из основных турбонасосных агрегатов (ТНА), а после выхода из нее газ направляют для дальнейшего использования или удаления. По выходу из дополнительной турбины газ направляют на вход сопла сброса, или в сопло камеры, или на вход добавочной турбины, или в теплообменник. Жидкостной ракетный двигатель (ЖРД), содержащий камеру, агрегаты управления и регулирования, ТНА с основной и как минимум одной дополнительной турбиной, причем газовый тракт основной турбины соединен с входом в камеру, в котором согласно изобретению газовый тракт как минимум одного из компонентов или их продуктов сгорания снабжен дополнительной магистралью, связывающей его с входом, по крайней мере, одной дополнительной турбины и выходом из нее, при этом магистраль снабжена локальной системой регулирования, расположенной до или после дополнительной турбины, а выход магистрали соединен с системой удаления газа и/или системой его повторного использования. Изобретение обеспечивает повышение экономичности ЖРД на номинальном режиме работы и дальнейшее повышение (более чем в 1,3 раза) тяги при форсировании двигателя. 2 н. и 2 з.п. ф-лы, 2 ил.

Изобретение относится к области ракетно-космической техники, а именно к области проектирования и эксплуатации двигательных установок космических аппаратов и разгонных блоков, предназначенных для обеспечения выдачи импульсов тяг космического аппарата по шести степеням свободы. Система содержит систему управления, баки сферической формы с деформируемыми металлическими перегородками, разделяющими топливные и газовые полости, шар-баллоны, заправочные горловины, блоки управляющих жидкостных реактивных двигателей малой тяги, корректирующе-тормозной двигатель, дроссели, электропневмоклапаны, электрожидкостные и обратные клапаны, сигнализаторы давления, магистрали подачи топлива и наддува, при этом система дополнительно снабжена герметичными упругими разделителями среды, соединяющими выходные трубопроводы топливных полостей баков окислителя и горючего с трубопроводами, объединяющими газовые полости баков, и их жесткость меньше жесткости деформируемых металлических перегородок баков, а корректирующе-тормозной двигатель совместно с тремя дополнительно введенными собраны в блок, установленный на продольной оси космического аппарата, при этом управляющие жидкостные реактивные двигатели малой тяги объединены в четыре блока по три штуки, причем в каждом блоке два двигателя установлены с диаметрально противоположным направлением вектора тяги в плоскости, перпендикулярной продольной оси космического аппарата, а вектор тяги третьего двигателя, установленного в плоскости продольной оси космического аппарата, направлен в сторону, противоположную направлению полета, при этом блоки управляющих жидкостных реактивных двигателей малой тяги попарно закреплены в диаметрально противоположных местах космического аппарата, а в магистралях подачи компонентов топлива к основным коллекторам управляющих жидкостных реактивных двигателей малой тяги и к коллекторам корректирующе-тормозных двигателей установлены четыре пары параллельно соединенных между собой электрожидкостных клапанов. Изобретение обеспечивает повышение надежности работы системы выдачи импульсов тяг при длительном сроке эксплуатации, снижение ее массы, а также улучшение управляемости полетом космического аппарата. 3 ил.

Изобретение относится к системе регулирования жидкостного ракетного двигателя (ЖРД) с насосной подачей и может быть использовано в ракетном двигателестроении. Устройство для обеспечения командного давления ЖРД с насосной подачей компонентов топлива, включающее камеру командного давления с патрубком подачи жидкости к потребителю, вход в которую соединен с полостью высокого давления, а выход - с полостью пониженного давления, при этом в качестве полости высокого давления выполнена полость насоса на максимальном диаметре центробежного колеса, в качестве полости пониженного давления выполнена полость насоса на диаметре центробежного колеса, большем диаметра щелевых уплотнений, а на входе и выходе камеры командного давления установлены настроечные дроссельные элементы. Изобретение обеспечивает повышение стабильности и точности системы регулирования. 1 з.п. ф-лы, 2 ил.

Изобретение относится к жидкостным ракетным двигателям. Система подачи топлива в ракетном двигателе, содержащая контур (4) подачи топлива, дополнительно содержит устройство изменения объема газа в контуре (4), выполненное с возможностью изменения объема газа в контуре во время функционирования ракетного двигателя. Рассмотрены также способ подавления эффекта Пого посредством изменения по меньшей мере одной частоты (50) гидравлического резонанса путем изменения расхода впрыска газа в контур (4), транспортное средство и машиночитаемый носитель информации. Изобретение обеспечивает подавление процесса вхождения в резонанс жидкого топлива в контуре подачи топлива в ракетном двигателе. 4 н. и 17 з.п. ф-лы, 14 ил.

Изобретение относится к ориентируемой системе ракетного двигателя для летательных аппаратов. Система ориентируемого ракетного двигателя для летательного аппарата, содержащая ракетный двигатель (4), содержащий камеру (7) сгорания и сопло (8), подсоединенное посредством горловины (9) сопла, при этом система выполнена с возможностью ориентировать ракетный двигатель (4) относительно исходного положения, определяющего исходную ось, которая, при нахождении ракетного двигателя (4) в исходном положении, ортогональна к отверстию (10) для выброса газов из сопла и проходит через центр (C) отверстия (10) для выброса газов, при этом система содержит средство (11) наклона, посредством которого ракетный двигатель (4) жестко подсоединен к горловине (9) сопла посредством прилегающей части сопла (8) и которое наклоняет сопло (8) и камеру (7) сгорания в противоположных направлениях так, что ракетный двигатель принимает, относительно исходного положения, наклонные положения, в которых центр (C) отверстия (10) для выброса газов из сопла (8) расположен, по меньшей мере, приблизительно на исходной оси, при этом средство (11) наклона содержит полую опорную конструкцию (14A), имеющую форму усеченной пирамиды, которая выполнена с возможностью деформации в обоих направлениях первого направления (12) деформации под действием первого приводного средства (15), на малом основании (24) которой размещен ракетный двигатель (4) и внутри которой размещена камера (7) сгорания. Изобретение обеспечивает улучшение работы летательного аппарата за счет уменьшение аэродинамического сопротивления. 2 н. и 9 з.п. ф-лы, 8 ил.

Изобретение относится к автоматическим системам управления расходом топлива (СУРТ) в устройствах топливопитания жидкостных ракетных двигательных установок (ЖРДУ) ракет-носителей (РН). В предложенной системе управления расходом компонента топлива ЖРД, включающей установленный в магистрали подачи компонента топлива командный дроссель, соединенный звеньями кинематической цепи с управляющим валиком, датчик углового положения звена кинематической цепи, реверсивный электродвигатель, ротор которого кинематически соединен с управляющим валиком, линии передачи электрических сигналов к электродвигателю и от датчика углового положения, датчик углового положения звена кинематической цепи закреплен на управляющем валике дросселя. Изобретение обеспечивает повышение точности работы внутри двигательной подсистемы СУРТ (ЖРД); снижение стоимости гидравлической тарировки характеристик дросселя СОБ, регулятора РКС; оптимизацию значений конечных параметров РН - продольной скорости и гарантийных остатков топлива. 2 з.п. ф-лы, 1 ил.
Наверх