Устройство ортогонального ввода ионов в ион-дрейфовый или масс-спектрометр

Изобретение относится к области масс- и ион-дрейфовой спектрометрии, найдет широкое применение при решении задач органической и биоорганической химии, иммунологии, биотехнологии и медицины при ионизации исследуемых веществ методом «электроспрей» и других. Устройство сепарации и ортогонального ввода ионов выполнено в виде Т-образного сочленения газодинамического и входного каналов, при этом входной канал состоит из диафрагмы и электростатической линзовой системы. Электрическое поле линзовой системы ортогонального канала затягивает ионы в дрейфовую область, а большие капли летят в первоначальном направлении. Технический результат - уменьшение засорения элементов входных интерфейсов, зарядки их элементов, уменьшение шумов в регистрируемом спектре. 1 з.п. ф-лы, 3 ил.

 

Предполагаемое изобретение относится к области ион-дрейфовой и масс-спектрометрии и найдет широкое применение при решении задач органической и биоорганической химии, иммунологии, биотехнологии и медицины при ионизации исследуемых веществ методом «электроспрей» и других. Метод «электроспрей» является одним из современных методов «мягкой» ионизации, который позволяет переводить в газовую фазу и одновременно ионизировать большие биологические молекулы, такие как пептиды, белки и полинуклеотиды. Однако у существующих масс- и ион-дрейфовых спектрометров с прямым соосным вводом ионов имеется ряд факторов, ограничивающих их работоспособность. Наличие больших неиспарившихся капель, летящих из источника, приводит, как правило, к засорению и закупориванию входных интерфейсов, зарядке их элементов, увеличению шумов в регистрируемом спектре.

Известен ион-дрейфовый спектрометр с источником ионов типа «электроспрей» [1], где источник и дрейфовая область располагаются на одной оси. В этом случае в ион-дрейфовый спектрометр попадают и крупные капли, что усложняет анализ, а также функционирование прибора.

Ближайшим из известных, выбранным в качестве прототипа, является устройство ортогонального ввода ионов [2] - неосевая конфигурация электроспрея, когда ось источника располагается под углом ко входу. Такое устройство ввода позволяет избежать засорения или закупоривания входного отверстия при введении ионов в анализатор масс-спектрометра, так как при использовании неосевой конфигурации электроспрея большие капли пролетают мимо. Таким образом масс-спектрометр предохраняется от попадания больших капель вовнутрь, а ионы затягиваются электрическим полем. Однако в этом устройстве ионы вводятся непосредственно в откачиваемую область масс-спектрометра без предварительной сепарации ионов.

Наличие за входным скиммером масс-спектрометра изогнутых каналов [3] также способствует решению поставленной задачи. При наличии изогнутых каналов тяжелые капли, вследствие большей инерции, не могут вписаться в поворот и теряются на стенке канала. Однако вследствие пониженного давления в системе, эффективность такого способа не реализуется в полной мере.

Задачей изобретения является существенное снижение степени загрязнения входной системы как ион-дрейфового спектрометра, так и масс-спектрометра каплями растворителя при возможности увеличения интенсивности потока и уменьшения шумов в регистрируемом дрейфовом спектре.

Поставленная задача решается посредством сепарации ионов непосредственно при атмосферном давлении в области перед входными устройствами ион-дрейфового или масс-спектрометров. Устройство ввода ионов выполнено ортогональным в виде Т-образного сочленения газодинамического и входного каналов, последний состоит из диафрагмы и элементов электростатической линзовой системы. В этом случае крупные распыленные капли сносятся газовым потоком дальше по каналу и тем самым не попадают во входную систему, а ионы затягиваются туда электрическим полем.

На фиг.1 показан общий вид (в разрезе) устройства ортогональной сепарации и ввода ионов в ион-дрейфовый или масс-спектрометр вместе с характерными траекториями ионов.

На фиг.2 приведена схема предлагаемого устройства. Устройство ввода ионов (фиг.1, 2) состоит из источника ионов типа «электроспрей» (не показан), цилиндрического канала 1, ортогонального входного канала с диафрагмой 2, линзовой системой 3-7 и сетки 8 (затвор Бредбери-Нильсена ион-дрейфового спектрометра либо на месте сетки располагается входной скиммер масс-спектрометра).

На фиг.3 проиллюстрирован физический принцип функционирования устройства: показаны характерные траектории ионов в зависимости от их близости ко входу дрейфовой области при различных значениях прикладываемого тянущего потенциала.

Предлагаемое устройство работает следующим образом (фиг.2, 3). Ионы и крупные распыленные капли, образуемые в источнике «электроспрей», двигаются в газовом потоке вдоль цилиндрического канала - трубки 1. При атмосферном давлении скорость ионов принимается равной скорости газового потока Ugas. Перпендикулярно оси трубки располагается входной канал ион-дрейфового или масс-спектрометра. На входную диафрагму 2 (фиг.2) ион-дрейфового канала подается тянущий электростатический потенциал. За входной диафрагмой располагается линзовая система 3-7 (фиг.2). Когда ионы, увлекаемые газовым потоком, подходят к области расположения входного отверстия ион-дрейфового канала, на них начинает действовать электрическое поле Е входной диафрагмы 2. Появляется составляющая скорости движения, определяемая коэффициентом подвижности иона k0 - U=k0E. Таким образом, полная скорость движения иона будет складываться из движения в газовом потоке и движения в появляющемся электрическом поле входной системы - Uion=Ugas+k0E. Характерные результирующие траектории ионов, полученные с помощью программы SIMION [4] и подпрограммы [5], показаны на фиг.2. Для определенности коэффициент подвижности ионов полагается равным 2 см2/(В·c). В данном примере скорость газового потока Ugas=12 см/с, потенциал входной диафрагмы 2 относительно потенциала трубки V2=-100 В, соответственно V3=-500 В, V4=-600 В, V5=-700 В, V6=-800 В, V7=-900 В. Потенциал сетки 8 (затвор Бредбери-Нильсена ион-дрейфового спектрометра либо располагаемый на месте сетки входной скиммер масс-спектрометра) составляет V8=-1000 В. Диффузия иона в газе определяется из соотношения Эйнштейна [6], связывающего коэффициент подвижности k0 с коэффициентом диффузии D:

где kB - постоянная Больцмана, Т - температура, Ze - заряд иона. Тогда равновероятное по направлениям смещение иона за Δt, обусловленное диффузией, будет равно (6DΔf)½. Диффузия приводит к незначительному искажению траектории движения иона.

На тяжелые или незаряженные капли «проваливающееся» электрическое поле входной системы не будет оказывать существенного влияния и они, увлекаемые газовым потоком, пройдут мимо. При этом ионы будут затягиваться во входную систему. Пространственная конфигурация проваливающегося в газодинамический канал электрического поля способствует фокусировке ионов на оси независимо от ординаты движения иона в потоке. Видно, что следуя силовым линиям поля, ионы огибают край входной системы. Эффективность захвата иона электрическим полем зависит как от прикладываемого потенциала, так и от координаты движения иона относительно сечения канала. На фиг.3 показывается эффективность захвата ионов в зависимости от их начального положения и напряженности затягивающего электрического поля (-90, -150, -180, -210 В на входной диафрагме, потенциал цилиндрического канала 0 В) и постоянной скорости газового потока 24 см/с. Видно, что ионы, двигающиеся вдоль дальней стенки, слабее отклоняются в проваливающемся в канал электрическом поле. По мере роста потенциала входной системы повышается эффективность захвата ионов по сечению. При потенциале -210 В (фиг.3) все ионы попадают во входную систему ион-дрейфового или масс-спектрометра. Однако слишком сильное поле может привести к затягиванию вовнутрь крупных капель, что нежелательно.

Таким образом, предложенное устройство ортогонального ввода ионов во входную систему ион-дрейфового или масс-спектрометра способствует достижению поставленной цели, а именно уменьшению засорения элементов входных интерфейсов, зарядке их элементов, уменьшению шумов в регистрируемом спектре.

Источники информации

1. Tang X., Bruce J.E., Hill H.H. Characterizing electrospray ionization using atmospheric pressure ion mobility spectrometry // Anal. Chem. 2006, v.78, p.7751-7760.

2. Apffel J.A., Werlich M.H., Bertsch J.L., Goodley P.C. Orthogonal ion sampling for electrospray LC/MS. US patent: 5495108, date of patent Feb.27, 1996. (прототип)

3. Bajic S. Electrospray and atmospheric pressure chemical ionization mass spectrometer and ion source. US patent: 5756994, date of patent May 26,1998.

4. Dahl D.A. SEMION 7 User's Manual. Idaho National Engineering Lab., 2000, 657 p.

5. Курнин И.В., Самокиш В.А., Краснов H.B. Моделирование работы ион-дрейфового спектрометра с затвором Бредбери-Нильсена // Научное приборостроение, 2010, т.20, №3 (в печати).

6. Смирнов Б.М. Диффузия и подвижность ионов в газе.// УФН, 1967, т.92, вып.1, с.75-103.

1. Устройство ортогонального ввода ионов в ион-дрейфовый или масс-спектрометр, включающее источник ионов типа «электроспрей», отличающееся тем, что ортогональный ввод ионов выполнен в виде Т-образного сочленения газодинамического и входного каналов, при этом входной канал состоит из диафрагмы и элементов электростатической линзовой системы.

2. Устройство по п.1, отличающееся тем, что газодинамический канал имеет цилиндрическую форму.



 

Похожие патенты:

Изобретение относится к приборостроению, а более конкретно к области изотопного анализа химических элементов масс-спектрометрическим методом. .

Изобретение относится к масс-спектрометрии, в частности к динамическим гиперболоидным масс-спектрометрам пролетного типа, и может быть использовано при создании квадрупольных фильтров масс с повышенной чувствительностью и разрешающей способностью.

Изобретение относится к газовому анализу и может быть использовано для одновременной ионизации в положительной и отрицательной модах частиц веществ, находящихся в газе, в том числе в воздухе

Изобретение относится к технической физике и может быть использовано при изготовлении спектрометров электронного парамагнитного резонанса (ЭПР). Спектрометр содержит сигнальный 1 и гетеродинный 2 генераторы СВЧ, измерительный аттенюатор 3, смесители опорного 4 и сигнального 5 каналов, циркулятор 6 с измерительным резонатором 7, УПЧ 8 опорного и УПЧ 9 сигнального каналов, фазочастотные дискриминаторы 10 и 11, делители частоты 12 и 13, синхронные детекторы 14 и 15, фазовращатели 16 и 17, элемент перестройки резонансной частоты измерительного резонатора 18, делители СВЧ мощности 19 и 20, трехпозиционный переключатель 21 режимов работы, устройство синтеза опорных частот 22, опорный генератор 23. Технический результат - упрощение устройства, уменьшение его габаритов, снижение потребляемой мощности и фазовых шумов генератора СВЧ. 1 ил.

Изобретение относится к спектрометрии ионной подвижности, позволяющей обнаруживать сверхмалые количества взрывчатых, наркотических, опасных и токсичных веществ, проводить медицинские исследования, а также обеспечивать контроль качества продуктов питания, строительных и промышленных материалов. Устройство преобразования ионного тока спектрометра ионной подвижности с быстрым переключением полярности детектируемых ионов основано на использовании интегрирующего и дифференцирующего каскадов, преобразующих входной ионный ток в напряжение и обеспечивающих эквивалентную резистивную характеристику трансимпедансного преобразования ионного тока, а также по крайней мере одного управляемого генератора тока на входе интегрирующего каскада для задания стартового напряжения на его выходе. Заряд компенсирующего импульса тока управляемого генератора определяется интегральным зарядом ионов предыдущего цикла, емкостными наведенными зарядами от электрических цепей, изменяющих потенциал при переключении полярности высокого напряжения, и необходимым напряжением на выходе интегрирующего каскада. Технический результат - уменьшение накопительной емкости интегрирующего каскада, управление зарядом на накопительной емкости с помощью источника тока, минимизация переноса заряда через цепь управления генератора тока, что позволяет увеличить чувствительность интегрирующего каскада и оптимизировать динамический диапазон трансимпедансного преобразования ионного тока при переключении полярности детектируемых ионов. 5 ил.

Изобретение может быть использовано для обнаружения таких веществ, как взрывчатка, наркотики, отравляющих веществ кожно-нарывного и нервно-паралитического действия и т.п. Описаны спектрометры, включающие интегральные емкостные детекторы. Интегральный емкостной детектор интегрирует ионный ток из коллектора, преобразуя его в изменяющееся напряжение. Детектор имеет в своем составе коллектор, сконфигурированный для приема ионов в спектрометре, диэлектрик и пластину, перекрывающуюся с коллектором и расположенную с противоположной стороны от диэлектрика. Детектор также имеет в своем составе усилитель. Изобретение позволяет снизить уровень шума. 3 н. и 21 з.п. ф-лы, 6 ил.

Устройство для питания напряжением катода масс-спектрометра имеет двухтактный измерительный преобразователь, причем, помимо обычных выпрямительных диодов (7, 9), имеется управляемый выпрямитель (8, 10). Затвор первого транзистора (8) соединен со вторым выходом (30), а затвор второго транзистора (10) соединен с первым выходом (32) трансформатора. Устройство для питания напряжением, состоящее по меньшей мере из одного умножителя напряжения, через конденсаторы (13, 14, 15) соединено с выходом трансформатора и, среди прочего, запутывает измерительное устройство эмиссионного тока. Технический результат - повышение эффективности переключения. 8 з.п. ф-лы, 2 ил.

Изобретение относится к детекторному устройству, а именно к детекторам для спектрометров, которые могут быть использованы для обнаружения таких веществ как взрывчатка, наркотики, отравляющих веществ кожно-нарывного и нервнопаралитического действия и т.п. Согласно изобретению спектрометры включают интегральные емкостные детекторы, при этом интегральный емкостной детектор интегрирует ионный ток из коллектора с получением изменяющегося напряжения. Детектор имеет в своем составе коллектор, сконфигурированный для приема ионов в спектрометре, диэлектрик и пластину, перекрывающую коллектор, с противоположной стороны от диэлектрика. Детектор также имеет в своем составе усилитель. Предложен емкостной детектор со смещением. Изобретение обеспечивает возможность расширения динамического диапазона и снижение уровня шумов. 3 н. и 35 з.п. ф-лы, 9 ил.

Изобретение относится к детекторному устройству, а именно к детекторам для спектрометров, которые могут быть использованы для обнаружения таких веществ как взрывчатка, наркотики, отравляющих веществ кожно-нарывного и нервнопаралитического действия и т.п. Согласно изобретению спектрометры включают интегральные емкостные детекторы, при этом интегральный емкостной детектор интегрирует ионный ток из коллектора с получением изменяющегося напряжения. Детектор имеет в своем составе коллектор, сконфигурированный для приема ионов в спектрометре, диэлектрик и пластину, перекрывающую коллектор, с противоположной стороны от диэлектрика. Детектор также имеет в своем составе усилитель. Предложен емкостной детектор со смещением. Изобретение обеспечивает возможность расширения динамического диапазона и снижение уровня шумов. 3 н. и 35 з.п. ф-лы, 9 ил.
Наверх