Способ демпфирования пьезоэлектрических излучателей и устройство для его осуществления

Использование: для демпфирования пьезоэлектрических излучателей. Сущность: заключается в том, что пьезопластину возбуждают путем кратковременного подключения с помощью первого ключа к источнику возбуждения, после чего разряжают через разрядный резистор, при этом через интервал времени, равный одному периоду собственных механических колебаний пьезопластины, ее закорачивают вторым ключем, при этом сопротивление разрядного резистора выбирают таким, чтобы выделившаяся на нем электрическая энергия в момент замыкания второго ключа была пропорциональна потерям механической энергии в пьезопластине за один период ее колебаний. Технический результат: обеспечение абсолютного демпфирования пьезопластин без ухудшения их эффективности как излучателя ультразвука. 2 н.п. ф-лы, 2 ил.

 

Предлагаемые способ и устройство для его реализации относятся к области неразрушающего контроля, а именно к устройствам ультразвукового контроля материалов и изделий.

Известны способы демпфирования ультразвуковых пьезоэлектрических излучателей - как отдельных пьезопластин, так и пьезонреобразователей на их основе (ПП). Например, пьезопластины выполняют с переменной толщиной, выполняют частичную деполяризацию пьезопластины, шунтируют отдельные области пьезопластины активными сопротивлениями - см., например, книгу "Ультразвуковые преобразователи для неразрушающего контроля" / Под общей ред. И.Н.Ермолова. - М.: Машиностроение, 1986, в качестве демпфера используют электронные схемы типа конвертеров отрицательного сопротивления (см., например, а.с. №1254376), используют звукопоглощающие демпферы из различных материалов, сплавов или смесей, в том числе различные затвердевающие смеси, наносимые на заднюю поверхность пьезопластины (см. упомянутую выше книгу, стр.205, а также справочник Й. Крауткремер, Г. Крауткремер "Ультразвуковой контроль материалов", М., Металлургия, 1991 г.) и т.д.

Однако всем этим способам присущи недостатки. При использовании механических способов демпфирования (типа выполнения пьзопластин переменной толщины) основным недостатком является недопустимое снижение эффективности пьезопреобразователей. Это объясняется тем, что полоса пропускания пьезопластины переменной толщины как электрического элемента действительно расширяется, однако ее эффективность как излучателя ультразвука при переменной толщине снижается значительно быстрее, нежели расширяется полоса пропускания, поскольку как пространственный излучатель она перестает быть единым целым и может быть замещена группой разнесенных в пространстве излучателей разных частот с пропорциональным снижением эффективности возбуждения и приема на каждой из частот спектра. Поэтому результирующая эффективность задемпфированных таким способом пьезопластин оказывается во много раз меньшей, нежели у такой же пьезопластины постоянной толщины, что делает их в большинстве случаев непригодными для ультразвукового контроля.

При использовании физических способов (например, при использовании вольфрамо-эпоксидных смесей, наносимых на обратную сторону пьезопластины) основным недостатком является как недостаточная эффективность демпфирования, не позволяющая обеспечить прием сигнала той же пьезопластиной, которая возбуждает ультразвук, в ближней зоне, так и непредсказуемость результатов демпфирования. Эти недостатки, вероятно, могут быть устранены путем совершенствования технологии изготовления демпфера, однако при этом усложнится производство пьезопреобразователей и увеличится их стоимость.

При использовании электрических способов демпфирования обычно наблюдается полная неэффективность, поскольку быстро погасить колебания пьезопластины при ее возбуждении напряжением в сотни вольт демпфирующим устройством с питанием в несколько вольт невозможно. С другой стороны, практически невозможно реализовать достаточно быстродействующее и экономичное усилительное устройство с питанием в несколько сотен вольт, чтобы использовать его для демпфирования, поэтому подобный способ подавления колебаний при высоковольтном возбуждении пьезопластины можно рассматривать только как теоретический.

Наиболее близким по принципу к предлагаемому является устройство, представленное в справочнике "Ультразвуковой контроль материалов" Й. и Г. Крауткремеров на рис.10.14 г, стр.206. Это устройство содержит ключ, включенный между клеммами источника возбуждения последовательно с пьезопластиной, параллельно которой включен разрядный резистор. В устройстве реализуется следующий способ демпфирования - пьезопластину возбуждают путем кратковременного подключения ее к источнику возбуждения, после чего ее разряжают с помощью разрядного резистора, подготавливая к следующему циклу возбуждения. Поскольку после возбуждения пьезопластина продолжает деформироваться, на ее электродах возникают потенциалы, которые за счет наличия разрядного резистора создают через пьезопластину токи, противодействующие ее колебаниям, что обеспечивает эффект демпфирования.

Как и прочие способы электрического демпфирования, данный способ малоэффективен, поскольку демпфирующие токи намного меньше тока возбуждения. Для увеличения эффективности демпфирования данным способом приходится по возможности уменьшать сопротивление разрядного резистора, которое в реальных устройствах обычно составляет 50-75 Ом. При этом его дальнейшее уменьшение нежелательно, т.к. это приводит к существенному снижению эффективности возбуждения, сужению полосы пропускания и к увеличению потребляемой мощности.

Задачей настоящего изобретения является обеспечение абсолютного демпфирования пьезопластин без ухудшения их эффективности как излучателя ультразвука.

С этой целью предлагается способ электрического демпфирования пьезопластины, которую возбуждают путем кратковременного подключения с помощью первого ключа к источнику возбуждения, после чего разряжают через разрядный резистор, отличающийся тем, что через интервал времени, равный одному периоду собственных механических колебаний пьезопластины, ее замыкают вторым ключем, при этом сопротивление разрядного резистора выбирают таким, чтобы выделившаяся на нем электрическая энергия в момент замыкания второго ключа была пропорциональна потерям механической энергии в пьезопластине за один период ее колебаний.

Устройство для реализации этого способа содержит первый ключ, включенный последовательно с источником возбуждения и совместно с ним параллельно пьезопластине, параллельно которой также включен разрядный резистор, и отличается тем, что в него введен второй ключ, причем входы обоих ключей соединены между собой через устройство временной задержки, создающее задержку, равную одному периоду собственных механических колебаний пьезопластины, при этом вход первого ключа подключен к выходу генератора запускающего импульса, а разрядный резистор включен параллельно второму ключу или последовательно с ним.

На фиг.1, 2 показаны два варианта функциональной схемы устройства, предназначенного для реализации предлагаемого способа демпфирования пьезопластины.

Устройство содержит источник возбуждающего напряжения 1, пьезопластину 2, первый ключ 3, вход которого подключен к генератору запускающего импульса 4, разрядный резистор 5, устройство временной задержки 6, включенное между входами управления первого ключа 3 и второго ключа 7.

Устройство функционирует следующим образом. После завершения зарядного импульса, создаваемого кратковременным замыканием первого ключа 3, пьезопластина 2 начинает колебаться с резонансной частотой своей механической системы.

Чтобы остановить колебания, необходимо отобрать запасенную ею энергию, а для этого необходимо подать на пьезопластину останавливающий импульс примерно такой же мощности, как при возбуждении. При этом нужно выполнить два условия - чтобы и кинетическая, и потенциальная энергия колеблющейся системы в результате останавливающего воздействия стала равна нулю. Очевидно, что запасенная пьезопластиной 2 механическая энергия при ее возбуждении путем замыкания первого ключа 3 пропорциональна электрической энергии, полученной от источника возбуждения 1, которая определяется изменением напряжения между обкладками пьезопластины 2 в процессе возбуждения. Допустим, что в результате замыкания ключа 2 напряжение между обкладками пьезопластины изменилось от нуля до U1. Тогда запасенная пьезопластиной энергия составит

где С - емкость пьезопластины. Фиксированная часть этой энергии превращается в энергию механических колебаний.

Очевидно, что, чтобы остановить механические колебания, необходима такая же энергия. Это условие выполняется путем замыкания пьезопластины 2 вторым ключом 7, поскольку напряжение между обкладками при этом изменится от U1 до нуля, а следовательно, энергия, потерянная пьезопластиной, составит

При этом точно такая же фиксированная часть этой энергии, как и при заряде, превратится в энергию механических колебаний, равную по величине энергии возбуждения. Однако возникающие при разряде механические колебания будут иметь противоположную фазу. Следовательно, если зарядить пьезопластину, замкнув первый ключ, и сразу же разрядить ее, замкнув второй ключ, за интервал времени, много меньший периода колебаний ее механической системы, никаких механических колебаний не возникнет. Аналогичная картина наблюдается, если по механическому маятнику нанести почти одновременно удары одинаковой силы с двух противоположных сторон, в результате чего он останется неподвижным. Поскольку пьезопластина является относительно добротной колебательной системой, параметры запасенной в ней механической энергии (т.е. величина и фаза) к началу второго периода колебаний будут приблизительно соответствовать моменту возбуждения. Поэтому если разрядить пьезопластину в соответствии с предлагаемым способом точно через период ее собственных механических колебаний, то без учета потерь пьезопластина совершит всего одно механическое колебание, причем совершенно свободно, поскольку оба ключа 3, 7 в процессе колебания могут быть разомкнуты. После замыкания второго ключа 7 суммарная механическая энергия станет равной нулю, поскольку при разряде пьезопластины 2 ток через нее имеет противоположное направление, а следовательно, создаваемая им механическая энергия будет иметь точно такую же величину, но противоположную фазу по отношению к кинетической энергии пьезопластины, созданной возбуждающим импульсом. Это гарантирует максимальную эффективность возбуждения ультразвука при высокой и предсказуемой эффективности демпфирования. Фактически данный способ предполагает возбуждение пьезопластины и ее демпфирование двумя противоположными импульсами тока. Следует отметить, что при возбуждении пьезопластины предлагаемым способом длительность замыкания первого ключа 3 отражается только на амплитуде, но никак не отражается на результирующей форме колебаний, т.е. на характеристиках демпфирования. Продолжительность замкнутого состояния второго ключа 7 в любом случае должна быть достаточной для полного разряда пьезопластины 2.

От точности подачи разрядного импульса в предлагаемом устройстве зависит та остаточная энергия, которая остается в пьезопластине 2, а следовательно, степень демпфирования и уровень помех от процесса возбуждения. При этом погрешность всего в несколько процентов между длительностью периода механических колебаний ньезопластины и задержкой между импульсами заряда и разряда приводит к такому уровню остаточных колебаний, который с учетом очень большой энергии возбуждения делает такое демпфирование совершенно недостаточным для высокочувствительных ультразвуковых приборов. Это объясняется тем, что принятый отраженный сигнал весьма слаб, но при этом он обязательно должен превышать шум от остаточных колебаний пьезопластины, чтобы отношение сигнал/шум было существенно больше единицы (имеется в виду использование пьезопластины в совмещенном пьезопреобразователе). При этом попытки скомпенсировать временную ошибку за счет изменения соотношения между внутренними сопротивлениями обоих ключей или за счет дополнительного разряда пьезопластины не дают положительного результата, поскольку из-за наличия фазовых сдвигов такие приемы позволяют минимизировать только кинетическую энергию механических колебаний, но не потенциальную, а так как оба вида энергии имеют разные знаки, то их нельзя скомпенсировать одновременно. И только при переходе колебания через нуль потенциальная энергия равна нулю, а поэтому общая энергия пьзопластины может быть скомпенсирована предлагаемым способом. Это подтверждено экспериментальным путем.

Однако остановить колебания пьезопластины, используя только перечисленные операции, теоретически возможно только тогда, когда пьезопластина ничего не излучает в окружающую среду - например, если она находится в воздухе и если добротность ее механической системы стремится к бесконечности. В реальных пьезопреобразователях пьезопластина имеет ограниченную добротность и всегда находится в акустическом контакте с твердыми материалами - с одной стороны - это демпфер, а с другой - протектор. При этом делается все возможное, чтобы как можно большая часть энергии колеблющейся пьезопластины поглотилась протектором и контролируемым изделием для повышения эффективности контроля. Поэтому когда завершается первое колебание пьезопластины, сохраняющаяся в ней кинетическая энергия будет меньшей, нежели энергия возбуждения, так как часть энергии уйдет в соседние с пьезопластиной материалы. В то же время пьезопластина является хорошим изолятором, и электрическое напряжение на ней в течение одного колебания практически не меняется. Поэтому закорачивание пьезопластины, встроенной в реальный пьезопреобразователь, вторым ключом 7 приводит к тому, что разряд ее емкости становится как бы вторым возбуждающим импульсом. И хотя его амплитуда незначительна, тем не менее возникающие колебания оказываются значительно больше слабых принимаемых сигналов. При этом невозможно устранить этот импульс путем изменения интервала времени между зарядом и разрядом по причинам, указанным выше.

Поэтому для решения этой проблемы предлагается использовать разрядный резистор 5 строго определенного сопротивления, подбираемого для каждого конкретного пьезопреобразователя. Включение такого резистора, сопротивление которого обычно составляет несколько килоом, параллельно пьезопластине 2 позволяет несколько уменьшить электрическую энергию, запасенную в ней к моменту включения второго ключа, и тем самым устранить второй возбуждающий импульс. Такой способ решения проблемы приемлем только тогда, когда возбуждающий импульс намного короче периода колебаний пьезопластины, т.е. в основном применим для низкочастотных преобразователей. Аналогичные результаты получаются при включении разрядного резистора 5 последовательно с вторым ключом 7. В этом случае энергия, запасенная в пьезопластине 2, не меняется, однако изменяется разрядный ток, протекающий через пьезопластину при замыкании второго ключа 7, что эквивалентно некоторому уменьшению энергии разрядного импульса.

Такой прием менее удобен для реализации, однако пригоден для преобразователей с любой рабочей частотой. Сопротивление разрядного резистора в этом случае составляет единицы - десятки Ом. В результате подстройки сопротивления этого резистора возможно добиться практически абсолютного демпфирования, когда пьезопластина возбуждает в объекте контроля действительно единственное колебание, непосредственно после которого возможен прием отраженных сигналов.

1. Способ электрического демпфирования пьезопластины, которую возбуждают путем кратковременного подключения с помощью первого ключа к источнику возбуждения, после чего разряжают через разрядный резистор, отличающийся тем, что через интервал времени, равный одному периоду собственных механических колебаний пьезопластины, ее закорачивают вторым ключем, при этом сопротивление разрядного резистора выбирают таким, чтобы выделившаяся на нем электрическая энергия в момент замыкания второго ключа была пропорциональна потерям механической энергии в пьезопластине за один период ее колебаний.

2. Устройство для реализации способа по п.1 содержит первый ключ, включенный последовательно с источником возбуждения и совместно с ним параллельно пьезопластине, параллельно которой также включен разрядный резистор, отличающееся тем, что в него введен второй ключ, включенный параллельно пьезопластине, причем входы управления обоих ключей соединены между собой через устройство временной задержки, создающее задержку, равную одному периоду собственных механических колебаний пьезопластины, при этом вход первого ключа подключен к выходу генератора запускающего импульса, а разрядный резистор включен параллельно второму ключу или последовательно с ним.



 

Похожие патенты:

Изобретение относится к устройству для неразрушающего испытания материала испытуемого предмета, массивного, по меньшей мере, в некоторых участках, посредством воздействия на испытуемый предмет ультразвуковыми волнами и измерения отраженных внутри испытуемого предмета ультразвуковых волн, согласно пункту 1 формулы изобретения.

Изобретение относится к приборостроению и может найти применение в ультразвуковых приборах различного назначения, например ультразвуковых расходомерах жидкостей и газов, уровнемерах и т.д.

Изобретение относится к области ультразвуковой измерительной техники и может быть использовано при исследовании жидкостей и неразрушающем контроле твердых материалов.

Изобретение относится к неразрушающим испытаниям материалов ультразвуковым методом и может быть использовано для контроля качества и дефектоскопии твердых материалов в строительстве, горном деле, машиностроении.

Изобретение относится к области средств неразрушающего контроля (НК) и может быть использовано для контроля напряженного состояния металлоконструкций, в том числе и при неоднородном распределении напряжений в районе сварных швов, в трубах, различных металлических профилях, нефте- и газопроводах и т.п.

Изобретение относится к измерительной технике и может быть использовано в качестве устройства визуализации внутренних неоднородностей в плоской пластине при ее ультразвуковом зондировании с ее сканированием по ортогональным координатам относительно фокуса ультразвуковых волн.

Изобретение относится к контрольно-измерительной технике, а именно к неразрушающему ультразвуковому контролю, и может быть использовано для контроля качества таких длинномерных изделий, как стержни, прутки, цилиндрические заготовки в потоке производства с использованием струйного акустического контакта.

Изобретение относится к контрольно-измерительной технике, а именно к неразрушающему ультразвуковому контролю и, может быть использовано для контроля изделий, в том числе для контроля изделий в потоке производства.

Изобретение относится к устройствам ультразвуковой дефектоскопии. .

Изобретение относится к электромагнитно-акустическому преобразователю для ультразвукового контроля образцов из электропроводящего материала, а также к устройству для ультразвукового контроля, включающему, по меньшей мере, один такой электромагнитно-акустический преобразователь

Использование: для внутреннего контроля детали. Сущность изобретения заключается в том, что устройство для внутреннего контроля детали (22), имеющей сверление (24) в форме полого цилиндра, содержит компоновку ультразвуковых преобразователей с множеством элементов (10) преобразователя ультразвука, расположенных, по меньшей мере, в одном ряду рядом друг с другом в несущем элементе (2) с возможностью пластичной деформации, имеющем форму сегмента полого цилиндра и имеющем множество скользящих выступов (26), продолжающихся в его продольном направлении и выдающихся в радиальном направлении выступающей частью (s) над передающими или, соответственно, приемными поверхностями элементов (10) ультразвукового преобразователя. Технический результат: обеспечение возможности надежно контролировать деталь из внутренней поверхности сверления. 9 з.п. ф-лы, 4 ил.

Использование: для проверки трубопроводов и технологического оборудования. Сущность изобретения заключается в том, что используют постоянные, ультразвуковые, гибкие, имеющие сухое средство обеспечения контакта линейные решетки, позволяющие обнаруживать и/или измерять коррозионные потери стенки, коррозионное растрескивание под напряжением и/или начало образования трещин внутри трубопровода. Устройство для ультразвукового испытания материалов содержит линейную решетку ультразвуковых датчиков и гибкое, пропускающее звук сухое средство обеспечения контакта, окружающее по меньшей мере участок каждого из ультразвуковых датчиков. Технический результат: обеспечение возможности создания ультразвуковых датчиков, которые могут быть установлены и могут работать в течение длительного времени и/или постоянно, соответствуя специфическим требованиям контроля объекта. 10 з.п. ф-лы, 14 ил.

Изобретение относится к области измерительной техники. Способ включает взаимное перемещение передающего и приемного ультразвуковых преобразователей относительно контролируемого изделия, пропускание ультразвуковых волн через изделие и обнаружение внутренних дефектов в материале путем анализа искажений ультразвукового сигнала, прошедшего через материал изделия, одновременно посредством сканирующей системы осуществляют перемещение изделия относительно ультразвуковых преобразователей. Перед проведением ультразвукового контроля измеряют размеры минимального для данного изделия дефекта типа нарушения сплошности материала следующим образом: исследуемое изделие в области предположительного расположения дефектной области разрезают на равные образцы, на торцах образцов измеряют раскрытие δ выходящих на торцы дефектов с шагом Δd, заведомо меньшим, чем размеры минимального дефекта, производят послойную препарацию образцов, после препарации измеряют площадь участков дефектов, принадлежащих соответствующему раскрытию δ, рассчитывают и строят экспериментальную зависимость плотности площади дефектов от величины раскрытия. На основании построенных экспериментальных зависимостей с учетом коридора доверительного интервала, рассчитанного с заданной вероятностью с учетом неравноточности проводимых измерений, определяют площадь или характерный размер dmin и раскрытие δmin минимального дефекта для изделия. Далее определяют шаг сканирования ΔYmin поверхности изделия, при котором обеспечивается необходимая погрешность измерения минимального дефекта. Перемещение изделия относительно преобразователей проводят с этим шагом. Технический результат состоит в повышении достоверности результатов ультразвукового контроля изделий из полимерных композиционных материалов формы тел вращения. 4 з.п. ф-лы, 5 ил., 3 фото.

Использование: для измерения ультразвукового или биомеханического параметра, характерного для вязкоупругой среды. Сущность изобретения заключается в том, что устройство для измерения ультразвукового или биомеханического параметра, характерного для вязкоупругой среды, содержит по меньшей мере: ультразвуковой преобразователь; по меньшей мере один вибратор с неподвижной деталью и подвижной деталью, при этом указанный ультразвуковой преобразователь прикреплен к указанной подвижной детали указанного по меньшей мере одного вибратора; по меньшей мере один адгезивный элемент, прикрепленный к вибратору, при этом указанный адгезивный элемент выполнен с возможностью прикрепления посредством адгезии к поверхности, направленной к нему и принадлежащей вязкоупругой среде, и удержания испускающей и принимающей стороны ультразвукового преобразователя направленной к поверхности, к которой прикреплен адгезивный элемент. Технический результат: обеспечение возможности предоставления устройства для измерения ультразвукового или биомеханического параметра вязкоупругой среды, которое существенно не меняет параметры вязкоупругой среды и для которого измерения не зависят от навыков оператора. 12 з.п. ф-лы, 5 ил.

Использование: для дефектоскопии протяженных изделий эхометодом. Сущность изобретения заключается в том, что ультразвуковая антенная решетка, содержащая установленные в корпусе ультразвуковые преобразователи с сухим точечным контактом на рабочей поверхности решетки, индивидуальным прижимным механизмом с возможностью возвратно-поступательного перемещения перпендикулярно рабочей поверхности решетки и схемой управления, при этом преобразователи расположены в плане вдоль зигзагообразной линии с точками контакта в ее вершинах, векторы колебательных смещений всех ультразвуковых преобразователей ориентированы поперек или вдоль продольной оси антенной решетки, дополнительно установлены постоянные магниты, размещенные на рабочей поверхности решетки, схема управления выполнена в виде усилителя и генератора импульсов для каждого преобразователя, общего блока управления, устройства обработки сигналов и блока связи, при этом выход каждого генератора импульсов подключен к входу соответствующего преобразователя и входу соответствующего усилителя, выход которого подключен к соответствующему информационному входу устройства обработки сигналов, вход генератора импульсов соединен с соответствующим выходом блока управления, синхронизирующий выход которого соединен с входом устройства обработки сигналов, связанным, так же как и блок управления, с блоком связи, выход которого является выходом антенной решетки, связанным с устройством обработки и отображения информации. Технический результат: обеспечение возможности создания устройства с возможностью контроля изделий как с малыми поперечными размерами, так и изделий с двоякой протяженностью. 1 з.п. ф-лы, 4 ил.

Изобретение относится к электротехнике, к неразрушающему ультразвуковому контролю и может быть использовано в устройствах для выявления внутренних и поверхностных дефектов в объектах контроля, выполненных из токопроводящих материалов, а именно листов, полос, сортового проката и труб. Техническим результатом является повышение точности определения дефекта, снижение времени определения дефекта, бесконтактное возбуждение и прием акустической волны под заданным углом, формирование горизонтально поляризованной волны, которая не трансформируется в другие типы волн при падении на границу раздела между объектом контроля и внешней средой. Блок катушек индуктивности содержит, по крайней мере, три спиральные катушки индуктивности, расположенные в ряд на подложке из диэлектрического материала. Над блоком катушек индуктивности расположен постоянный магнит. Смежные спиральные катушки индуктивности на подложке смещены по разные стороны относительно продольной оси подложки. 7 з.п. ф-лы, 2 ил.

Предложены способ и устройство испытания испытуемого объекта (204). Способ испытания прочности соединений композитного объекта (204) включает: генерирование волны (228) напряжения в текучей среде (306) в полости (302) в конструкции (300) генератора волн; направление волны (228) напряжения через текучую среду (306) в полости (302) в композитный объект (204) и задание определенного количества свойств (310) волны (228) напряжения в текучей среде (306) на основании конфигурации (308) полости (302) в конструкции (300) генератора волн. Устройство для испытания прочности соединений композитного объекта (204) содержит: источник (304) энергии и конструкцию (300) генератора волн, имеющую полость (302), выполненную с возможностью удержания текучей среды (306), причем источник энергии (304) выполнен с возможностью генерирования волны (228) напряжения, которая проходит через текучую среду (306) в полости (302) в композитный объект (204), причем конструкция (300) генератора волн выполнена с возможностью задания определенного количества свойств (310) волны (228) напряжения в текучей среде (306) на основании конфигурации (308) полости (302) в конструкции (300) генератора волн. Технический результат – уменьшение габаритов устройства, возможность испытания объектов больших размеров и сложных форм. 2 н. и 11 з.п. ф-лы, 15 ил.

Использование: для обнаружения дефектов изделий. Сущность изобретения заключается в том, что ультразвуковое устройство контроля состояния изделий, состоящее из генератора зондирующего импульса, соединенного с размещенным на поверхности изделия одним или несколькими излучающими акустическими преобразователями, имеющее один или несколько приемных акустических преобразователей, каждый из которых соединен с полосовым частотным фильтром, снабжено последовательно соединенными предварительным усилителем, аналого-цифровым преобразователем, компьютером с монитором отображения выходных данных, блоком записи акустических сигналов, блоком вычисления взаимно корреляционных функций, блоком вычисления коэффициентов корреляции, амплитудным дискриминатором по уровню коэффициента корреляции и генератором сигнала опасности. Технический результат: увеличение достоверности результатов контроля, получаемое при уменьшенном количестве используемых акустических излучающих и приемных преобразователей. 1 ил.
Наверх