Аэродинамическая модель самолета из фотополимерного материала

Изобретение относится к области аэродинамики и может быть использовано при изготовлении аэродинамической модели (АДМ) транспортного средства (ТС), например самолетов, ракет, автомобилей, железнодорожного транспорта и т.д. Задачей изобретения является ускорение процесса создания высокодренированной модели и улучшение качества проведения эксперимента по визуализации ее обтекания. Аэродинамическая модель самолета из фотополимерного материала с дренажной системой выпуска красителей содержит носовую и хвостовую части фюзеляжа с гондолами двигателей, хвостовое оперение и консоль крыла. Модель изготовлена из фотополимера, устойчивого к воде, и снабжена устройством прокачки жидкости для имитации работы двигателя, соединенным гибким тросом с внешним приводом, причем каналы для подачи красителей имеют переходную часть с переменным диаметром и калиброванные сопла для выпуска красителей. Технический результат - возможность промывки каналов внутри модели, уменьшение сроков изготовления модели и возможность проведения испытаний аэродинамической модели из фотополимерного материала в гидродинамической трубе. 5 з.п. ф-лы, 3 ил.

 

Изобретение относится к области аэродинамики и может быть использовано при изготовлении аэродинамической модели (АДМ) транспортного средства (ТС), например самолетов, ракет, автомобилей, железнодорожного транспорта и т.д.

Изготовление АДМ по традиционной технологии основано на механической обработке составляющих их деталей из высокопрочной стали и алюминиевых сплавов и является весьма трудоемким процессом. Цикл изготовления модели, соответствующей по заданным в техническом задании параметрам, составляет ~6 месяцев и сокращение этого цикла ограничено физическими условиями процесса резания на механообрабатывающем оборудовании, что приводит к значительным срокам доводки аэродинамических характеристик транспортных средств.

Известны цельнометаллические АДМ (патент №172520, опубл. 29.06.1965 г., заявка №94023217, опубл. 10.03.1996 г; патент №377663, опубл. 17.04.1973 г., МПК G01M 9/08), в которых дренирование модели производится вручную.

Общий недостаток традиционного способа изготовления АДМ - большое количество механической и слесарной обработки и, как следствие, высокая трудоемкость (от 500÷800 до 1500÷2000 нормочасов).

Сравнительно новый способ изготовления АДМ с помощью формирования сменной обшивки из композиционного материала защищен патентом №2083967, опубл. 10.07.1997 г., МПК G01M 9/08 - универсальная аэродинамическая модель, преимущественно крыло, содержащая упругий каркас, соединенный со сменной обшивкой. Обшивка изготавливается формованием композиционного материала в заранее изготовленную прессформу, обработанную по профилю нервюр, или корку обшивки из полимерного материала, обработанную по профилю нервюр с последующим покрытием слоем композиционного материала, при этом для дренирования обшивки к внешнему слою приклеивают ленты или диски с калиброванными дренажными отверстиями и штуцерами для подсоединения дренажных трасс. Изготовление прессформы требует 3- или 5-координатной обработки на станках с ЧПУ. Таким образом, недостатком этого изобретения является высокая трудоемкость изготовления модели, которая составляет от 700÷800 до 1500÷2000 нормочасов.

Наиболее близким техническим решением является изобретение по патенту США №6553823, 2002 г., МПК G01M 9/08, представляющее собой полумодель для исследования распределения давления вдоль поверхности крыла, с дренированием ранее определенных сечений по потоку. Крыло изготовлено методом послойного синтеза за несколько итераций. Каналы выращиваются непосредственно при изготовлении крыла.

Существенным недостатком прототипа является необходимость механической доработки большого количества отверстий (сверление, развертка) для очистки от фотополимера узких каналов перед соплами и геометрической калибровки сопел выпуска газа. Последнее необходимо для ламинарности вытекающей струи газа. Соответствующая доработка требует значительных дополнительных затрат времени.

Задачей изобретения является ускорение процесса создания высокодренированной модели и улучшение качества проведения эксперимента в гидродинамической трубе.

Технический результат заключается в возможности промывки каналов внутри модели, уменьшении сроков изготовления модели и возможности проведения испытаний аэродинамической модели из фотополимерного материала в гидродинамической трубе.

Технический результат достигается тем, что аэродинамическая модель самолета из фотополимерного материала с дренажной системой выпуска красителей, состоящая из носовой части фюзеляжа, консолей крыла и центральной части фюзеляжа с гондолами двигателей и хвостовым оперением и кронштейна для крепления модели, изготовлена из фотополимера, устойчивого к воде, и снабжена устройством прокачки жидкости для имитации работы двигателя, соединенным гибким тросом с внешним приводом, причем каналы для подачи красителей имеют переходную часть с переменным диаметром и калиброванные сопла для выпуска красителей.

Технический результат достигается также тем, что в аэродинамической модели самолета длина переходной части составляет не менее 8 диаметров основного канала, а отношение входного диаметра к выходному не менее 2,5.

Технический результат достигается также тем, что в аэродинамической модели самолета длина калиброванного сопла для выпуска красителей составляет менее 2 мм.

Технический результат достигается также тем, что в аэродинамической модели самолета внутренние каналы выращены в процессе создания модели.

Технический результат достигается также тем, что в аэродинамической модели самолета внешний привод размещен за пределами рабочей части трубы.

Технический результат достигается также тем, что в аэродинамической модели самолета части модели соединены между собой полимером, из которого была изготовлена модель.

На фиг.1 изображена модель самолета с дренажной системой.

На фиг.2 представлен привод устройства прокачки жидкости.

На фиг.3 представлена фотография модели самолета с державкой.

Для физического эксперимента по исследованию обтекания новых аэродинамических компоновок используется гидротруба, в которой модель обтекается жидкостью, высокая плотность которой (~103 по сравнению с воздухом) обеспечивает полное подобие по числу Re и воспроизведение исследуемых условий обтекания.

Аэродинамическая модель самолета (фиг.1) из фотополимерного материала с дренажной системой выпуска красителей для испытания в гидродинамической трубе состоит из носовой части 1, центральной части фюзеляжа 2 с гондолами двигателей и хвостовым оперением, консолей крыла 3, кронштейна 4 для крепления к державке с приводом прокачивающего узла 5 (фиг.2).

Модель обладает высокой сложностью в сочетании с малыми размерами (фиг.3), поэтому модель (внешнюю и внутреннюю геометрию) изготавливают непосредственно по математическим моделям (без выпуска конструкторской документации) методом быстрого прототипирования.

Полную математическую модель с дренажной системой (фиг.1) разделяют на элементы для обеспечения оптимальной геометрии выращивания на лазерной стереолитографической установке. Составляющие части модели производят из фотополимера, который имеет малую усадку и абсолютно устойчив к воде, например НС300.

Центральная часть фюзеляжа склеивается с консолями крыла и хвостового оперения. Сборка и склейка модели проводится с помощью фотополимера, из которого изготавливается модель. Модель надевается на державку с помощью кронштейна, который вклеивается в центральную часть фюзеляжа. Через державку проходят две трубки для подвода краски, которые соединяются с внутренними каналами. Затем монтируют устройство прокачки воды для имитации работы двигателя и соединяют собранную модель через гибкий трос 6 (фиг.2) с внешним приводом, размещенным за пределами рабочей части трубы.

Каналы подачи красителей 7 (фиг.2) выращиваются непосредственно в материале крыла 3 с выходными отверстиями, диаметр которых позволяет дренировать тонкие элементы модели толщиной порядка 1 мм, с длиной выходного канала, обеспечивающим калибровку потока красителя, и внутренними каналами большего диаметра для подачи красителя к выходным отверстиям. Изогнутый канал для прокладки гибкого троса также выращивается при изготовлении хвостовой части фюзеляжа в процессе лазерной стереолитографии.

Использование данной технологии позволяет значительно сократить время и стоимость производства модели с дренажной системой выпуска многоцветных индикаторных красителей для исследования обтекания в гидротрубе.

Были проведены исследования тестовых моделей для оценки минимально возможных размеров каналов и выходных отверстий высокодренированных агрегатов аэродинамических моделей, разработаны рекомендации для улучшения геометрии каналов с целью повышения их эффективности при испытаниях в гидротрубе.

В процессе проведения эксперимента была проведена отработка геометрии дренажных каналов и выходных сопел, направленная на обеспечение их промывки без механического воздействия и стабилизации выпускаемых из сопел струй индикаторных красителей.

В результате проведенных исследований было предложено использовать геометрию выходных каналов с переменным диаметром, а для стабилизации выпускаемых струй - калиброванные сопла. Соотношение диаметра внешнего канала к диаметру внутреннего, обеспечивающее организацию промывки внутренних каналов от остатков фотополимера, должно быть не менее 2,5, а длина расширяющейся переходной части - не менее 8 диаметров основного канала, при этом длина калиброванных сопел должна быть менее 2 мм.

При такой геометрии канала, в результате уменьшения длины канала с маленьким диаметром, значительно повышается эффективность удаления остатков фотополимерной композиции и при этом геометрия выходных отверстий максимально приближена к кромке оперения. Все это позволяет улучшить качественную картину исследований в гидротрубе. Сборка и склейка модели проводилась с помощью фотополимера, из которого модель была изготовлена. Это позволило обеспечить в месте соединения полную целостность модели, которая проверялась прокачкой жидкости через дренажную систему.

Трудоемкость изготовления модели по традиционной технологии с применением станков с ЧПУ и последующей ручной доводкой аэродинамических поверхностей оценивается от 500-2000 нормочасов в зависимости от размеров модели и сложности конструкции.

Время изготовления данной модели на лазерном стереолитографе ЛС-250 составило 64 часа. Полное время изготовления с постобработкой, сборкой и склейкой составило 5 дней. Трудоемкость изготовления аэродинамической модели самолета по новой технологии составила 120 нормочасов.

1. Аэродинамическая модель самолета из фотополимерного материала с дренажной системой выпуска красителей и внутренними каналами, состоящая из носовой части фюзеляжа, консолей крыла и центральной части фюзеляжа с гондолами двигателей и хвостовым оперением, кронштейна для крепления модели, отличающаяся тем, что модель изготовлена из фотополимера, устойчивого к воде, и снабжена устройством прокачки жидкости для имитации работы двигателя, соединенным гибким тросом с внешним приводом, причем каналы для подачи красителей имеют переходную часть с переменным диаметром и калиброванные сопла для выпуска красителей.

2. Аэродинамическая модель самолета по п.1, отличающаяся тем, что длина переходной части составляет не менее 8 диаметров основного канала, а отношение входного диаметра к выходному не менее 2,5.

3. Аэродинамическая модель самолета по п.1, отличающаяся тем, что длина калиброванного сопла для выпуска красителей менее 2 мм.

4. Аэродинамическая модель самолета по п.1, отличающаяся тем, что внутренние каналы выращены в процессе создания модели.

5. Аэродинамическая модель самолета по п.1, отличающаяся тем, что внешний привод размещен за пределами рабочей части трубы.

6. Аэродинамическая модель самолета по п.1, отличающаяся тем, что части модели соединены между собой полимером, из которого была изготовлена модель.



 

Похожие патенты:

Изобретение относится к конструкции и способу изготовления лопастей аэродинамических моделей воздушных винтов при испытаниях в аэродинамических трубах. .

Изобретение относится к линейному исполнительному механизму, в частности для дистанционного управления регулируемыми компонентами аэродинамических моделей. .

Изобретение относится к области аэродинамики и может быть использовано при изготовлении аэродинамических моделей (АДМ) транспортных средств, например самолетов, ракет, автомобилей, железнодорожного транспорта и т.д.

Изобретение относится к области аэродинамических испытаний для измерения аэродинамических сил, действующих на уменьшенную в масштабе модель летательного аппарата в аэродинамической трубе в процессе экспериментального определения летно-технических и тягово-экономических характеристик летательных аппаратов.

Изобретение относится к экспериментальной аэродинамике, а именно к испытаниям моделей в аэродинамических трубах с имитацией силы тяги воздушно-реактивных двигателей, определению силовых параметров сопел и совмещенных тягово-аэродинамических характеристик моделей при обдуве внешним, преимущественно сверхзвуковым, потоком и предназначено для определения погрешностей, вносимых системой подвода рабочего тела реактивных струй.

Изобретение относится к области аэродинамических испытаний, а именно к установкам для исследования попадания посторонних частиц в воздухозаборник летательного аппарата.

Изобретение относится к области экспериментальной аэродинамики и может быть использовано при исследовании характеристик летательных аппаратов. .

Изобретение относится к авиации. .

Изобретение относится к области аэродинамики и может быть использовано при исследованиях характеристик аэродинамических моделей (АДМ) транспортных средств

Изобретение относится к области экспериментальной аэродинамики, в частности к исследованию проблем аэроупругости летательных аппаратов в области авиационной техники, а именно к разработке моделей для аэродинамических труб. Модель содержит силовой сердечник и крышку, представляющие в сборе единую разборную конструкцию замкнутой аэродинамической формы. Крышка выполнена из единого блока низкомодульного материала типа пенопласта переменной толщины по размаху и хорде несущей поверхности, разделенного на отсеки. Толщины отсеков плавно уменьшаются по направлению от локальных площадок контакта отсеков с сердечником модели к переходным зонам, при этом углы скоса граней отсеков составляют не более 45-50°. Локальные площадки расположены в центральной части каждого из отсеков, а переходные зоны между отсеками образованы за счет уменьшения толщины единого блока материала. Предлагаемый способ изготовления аэродинамической модели включает фрезерование сердечника и крышки на станках с ЧПУ, а также итерационную доводку жесткостных характеристик модели в сборе. Крышку изготавливают формованием или методом быстрого прототипирования из единого блока низкомодульного материала. На его внутренней поверхности создают отсеки с локальными площадками контакта с сердечником со скошенными поверхностями граней отсека и переходные зоны отсеков. Снаружи и изнутри крышку армируют тканью однонаправленного композита, а ее переходные зоны армируют дополнительно. Технический результат заключается в упрощении конструкции аэродинамической модели, ускорении способа ее изготовления. 2 н. и 2 з.п. ф-лы, 4 ил.

Изобретение относится к авиационной технике и касается экспериментальных исследований проблем аэроупругости летательных аппаратов (ЛА) в аэродинамических трубах. При изготовлении упругоподобных моделей ЛА на станках с ЧПУ производят предварительный и поверочный расчеты математической модели лонжерона, по результатам которых изготавливают лонжерон из стали или алюминиевого сплава методом высокоскоростного фрезерования на станке с ЧПУ с учетом подобия массово-инерционных и жесткостных характеристик изготавливаемого силового каркаса-лонжерона силовому каркасу натурного агрегата ЛА. Нижнюю формообразующую поверхность модели обрабатывают заодно с силовым каркасом-лонжероном на станке с ЧПУ. Для получения внешних обводов верхней формообразующей поверхности модели на предварительно изготовленный лонжерон наносят материал с низким модулем упругости методом напыления расплавленного вещества. Окончательное формирование обводов верхней аэродинамической поверхности модели осуществляют в режиме высокоскоростного низкомоментного фрезерования на станке с ЧПУ по созданной полной математической модели. Достигается высокая точность геометрического подобия внешней аэродинамической поверхности модели по отношению к натурному объекту, высокая точность воспроизведения массово-инерционных и жесткостных характеристик. 5 ил.

Изобретение относится к конструкции и способу изготовления лопастей аэродинамических моделей воздушных винтов, применяющихся для испытаний в аэродинамических трубах. Конструкция лопасти включает в себя регулярную часть, имеющую постоянный вес и геометрическую форму, и различные сменные концевые элементы. На конце регулярной части лопасти имеются переходные штыри, небольшая часть лонжерона, место стыковки, электрический разъем. Регулярная часть пера лопасти включает в себя: носовую многосекционную накладку, лонжерон с заданными жесткостными и весовыми характеристиками, верхнюю и нижнюю обшивку, заполнитель носовой части, заполнитель хвостовой секции, противофлаттерные грузы, концевую нервюру с микровыключателем, электрические провода, электрический разъем, грузы, провоцирующие флаттер. Сменные концевые элементы представляют собой конструкцию, состоящую из верхних и нижних обшивок, крепежных отверстий для стыковки с переходными штырями регулярной части лопасти, светодиодов, электрических проводов, электрического разъема, противофлаттерных грузов, легких заполнителей. Способ заключается в следующем: вначале изготавливается регулярная часть пера лопасти с обязательным точным измерением выступающих частей, таких как переходные штыри и концевая часть лонжерона, а затем результаты замеров используются при изготовлении посадочных мест в многочисленных сменных концевых элементах, отличающихся друг от друга различной геометрией, весом, центровкой, с последующей сборкой регулярной части с любым из сменных концевых элементов при помощи разборного винтового соединения. Технический результат заключается в возможности получения различных аэродинамических характеристик на базе одной лопасти, повышении надежности и сокращении времени изготовления испытаний лопастей. 2 н. и 8 з.п. ф-лы, 14 ил.

Изобретение относится к конструкции лопастей аэродинамических моделей воздушных винтов, предназначенных для испытаний в аэродинамических трубах. Лопасть аэродинамической модели воздушного винта содержит верхнюю и нижнюю обшивки, лонжерон, вкладыши, балансировочные и противофлаттерные грузы и носовые накладки. При этом концевая часть лопасти содержит одну или несколько нервюр, прикрепленных к задней стенке лонжерона, а корневая часть - прикрепленный к задней стенке лонжерона силовой элемент, включающий силовую лапку и силовую нервюру коробчатой формы с закрепленной между ними частью вкладыша хвостовой части лопасти. Достигается повышение жесткости корневой и концевой частей лопасти аэродинамической модели воздушного винта. 7 з.п. ф-лы, 6 ил.

Изобретение относится к области экспериментальных исследований динамических явлений аэроупругости летательных аппаратов в аэродинамических трубах. Динамически подобная аэродинамическая модель несущей поверхности содержит силовую упругую балку-лонжерон, дренированные блоки, установленные по размаху модели на силовую балку-лонжерон, нервюры, секции верхней и нижней обшивки, модельный электрогидравлический силовозбудитель для вынужденных колебаний модели в потоке, технические средства для измерений амплитудно-частотных характеристик модели. Балка-лонжерон состоит из пустотелого сердечника, на который наформованы монослои однонаправленного высокомодульного и высокопрочного полимерного композиционного материала. Каждый дренированный блок модели состоит из жесткого неразъемного каркаса с установленными на передней и задней кромке датчиками динамического давления и легкосъемных верхней и нижней панелей с установленными в них датчиками динамического давления. Обшивка модели представляет из себя трехслойные съемные секции переменной толщины. Изобретение направлено на повышение точности эксперимента. 7 з.п. ф-лы, 13 ил.

Способ определения баллистического коэффициента объекта по результатам внешнетраекторных измерений параметров его движения на атмосферном участке пассивного полета. Используется для определения значений баллистических коэффициентов объектов различной аэродинамической формы, что может быть востребовано в ракетостроении и других областях техники, занимающихся изучением движения объектов в газообразных средах. Технический результат - повышение точности определения баллистического коэффициента объекта по результатам внешнетраекторных измерений на атмосферном участке его пассивного полета.

Изобретение относится к измерительной технике, а именно к аэродинамическим моделям летательных аппаратов для исследования распределения давления по поверхности тонкостенной модели, испытываемой в аэродинамических трубах при условии имитации струи кормового ракетного двигателя. Сущность изобретения заключается в том, что к дренажным отверстиям, просверленным на обтекаемой поверхности аэродинамической модели, предназначенной для измерения распределения давления по поверхности, в корпусе тонкостенной оболочки выполняются внутренние криволинейные каналы в пределах толщины оболочки. Измеряемое давление, воспринимаемое дренажными отверстиями, подается в каналы, которые внутри оболочки проложены к месту крепления боковой державки и здесь стыкуются с дренажными трубками, соединяющими измерительные устройства давления, например батарейный манометр, с выходными сечениями каналов. Технический результат заключается в повышении точности и достоверности измерений. 2 ил.
Наверх