Распылительное устройство, способ и система мониторинга его работы

Изобретение относится к распылительным устройствам, например форсункам, и, в частности, к системе и способу мониторинга распылительного устройства, которое распыляет смесь текучих сред, для определения правильности его работы. В способе мониторинга работы распылительного устройства измеряют фактическое давление смеси первой и второй текучих сред, образованной в распылительном устройстве. Затем измеряют первое давление на входе первой жидкости и второе давление на входе второй жидкости, подаваемых на распылительное устройство. Кроме того, вычисляют прогнозируемое давление смеси по первому и второму давлениям на входе с использованием эмпирической формулы и определяют на основе сравнения прогнозируемого значения и фактического значения смеси правильность работы распылительного устройства. Система мониторинга работы распылительного устройства имеет впускные каналы для по крайней мере двух текучих сред, например воды и воздуха, и смесительную камеру, в которой смешиваются текучие среды. Датчик давления смеси установлен на распылительном устройстве для измерения давления смеси. Входные давления текучих сред, поступающих в распылительное устройство, также измеряются. Измеренные входные давления текучих сред используются для вычисления прогнозируемого давления смеси на основе эмпирической формулы, параметры которой могут быть получены, когда распылительное устройство установлено в рабочее положение. Рассчитанное значение давления и измеренное фактическое давление смеси затем сопоставляются для определения, правильно или нет функционирует распылительное устройство. Техническим результатом изобретения является обеспечение возможности правильного функционирования распылительного устройства в процессе эксплуатации, а также обнаружения любых значительных отклонений в работе или повреждений устройства. 3 н. и 12 з.п. ф-лы, 4 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к распылительным устройствам, например форсункам, и, в частности, к системе и способу мониторинга работы распылительного устройства.

Уровень техники

Распылительные устройства, например форсунки, широко используются в промышленности. Во многих применениях правильная работа распылительных устройств имеет важнейшее значение для технологических процессов, в которых используются распылители. Неисправность распылительного устройства может привести к выпуску бракованной продукции и может быть причиной возможного значительного ущерба.

Например, в сталелитейной промышленности используются распылительные форсунки с внутренним смешиванием для охлаждения стали в непрерывном процессе литья. Форсунки с внутренним смешиванием, используемые в процессах литья, создают аэрозоль из смеси воды и воздуха, то есть туман. Для этого распылительная форсунка имеет внутреннюю смесительную камеру и впускные каналы для воды и воздуха с калиброванными отверстиями. Вода и воздух подаются через впускные отверстия во внутреннюю смесительную камеру, где происходит их смешивание. Смесь подается по трубе к отверстию форсунки, через которое смесь распыляется с требуемой схемой распыления, например с плоской схемой распыления. Аэрозоль, создаваемая форсункой, зависит от входных давлений воды и воздуха, которые в зависимости от конкретных требований применения могут устанавливаться различной величины. Для обеспечения нормальной работы форсунки входные давления воздуха (и воды) должны поддерживаться с высокой точностью. Этого, однако, недостаточно для гарантирования надлежащей работы форсунки, поскольку впускные отверстия для воздуха и воды и наконечник форсунки подвержены эксплуатационному износу либо могут засориться, в результате чего на выходе форсунки не будет образовываться нужная аэрозоль. Подобное ухудшение работы или неисправность форсунок с внутренним смешиванием может развиваться постепенно с течением времени и его трудно контролировать или обнаружить.

Раскрытие изобретения

С учетом сказанного задачей изобретения является создание надежного способа эффективного мониторинга работы распылительного устройства, особенно распылительной форсунки с внутренним смешиванием, для гарантии его правильного функционирования в процессе эксплуатации.

Другой связанной с указанной выше задачей изобретения является обнаружение любых значительных отклонений в работе или повреждений распылительного устройства, например, распылительной форсунки с внутренним смешиванием, с тем чтобы распылительное устройство могло быть оперативно отремонтировано или заменено для сведения к минимуму возможного ущерба.

Эти задачи успешно решаются предложенными в данном изобретении системой и способом мониторинга работы распылительного устройства. Распылительное устройство имеет по меньшей мере первый впускной канал подачи первой текучей среды и второй впускной канал подачи второй кучей среды. Далее, распылительное устройство содержит внутреннюю смесительную камеру, в которой смешиваются первая и вторая текучие среды. Смесь передается от смесительной камеры к отверстию форсунки, из которого смесь выбрасывается в виде аэрозоли.

В соответствии с изобретением датчик давления смеси установлен в распылительном устройстве вниз по потоку от смесительной камеры для определения давления смеси. Также проводится измерение давления первой и второй текучих сред, поступающих в распылительное устройство. Измеренные давления первой и второй текучих сред используются для вычисления на основании эмпирического соотношения прогнозируемого давления смеси. Рассчитанная величина и измеренная величина давления смеси затем сравниваются для определения правильности функционирования распылительного устройства.

Дополнительные признаки и преимущества изобретения подробно описаны ниже на примере предпочтительных вариантов выполнения, проиллюстрированных чертежами.

Краткое описание чертежей

Фиг.1 представляет схематическое изображение варианта выполнения системы мониторинга, в которой работа распылительного устройства с внутренним смешиванием контролируется контроллером;

Фиг.2 представляет вид сверху поперечного сечения распылительного устройства, показанного на Фиг.1;

Фиг.3 представляет вид сбоку поперечного сечения распылительного устройства, на котором установлен датчик давления смеси; и

Фиг.4 представляет блок-схему процесса настройки и управления работой системы мониторинга работы распылительного устройства.

Осуществление изобретения

В настоящем изобретении предлагается система и способ мониторинга работы распылительного устройства, в которое поступают различные текучие среды и которое создает аэрозоль смеси текучих сред с заданной схемой распыления. На Фиг.1 показан вариант выполнения такой системы, которая включает распылительное устройство 10 и контроллер 20, который осуществляет мониторинг работы распылительного устройства так, как это будет подробно описано ниже.

Распылительное устройство 10, показанное на Фиг.1, имеет первый впускной канал 11 для ввода в распылительное устройство первой текучей среды и второй впускной канал 12 для ввода в устройство второй текучей среды. Из двух текучих сред внутри распылительного устройства образуется смесь, которая выбрасывается из выходного наконечника 14 форсунки распылительного устройства в форме аэрозоли 15 с требуемой схемой распыления. Распылительное устройство может быть использовано, например, в процессе литья металла для охлаждения отливки, причем в этом случае первая и вторая текучие среды могут представлять собой соответственно воду и воздух. Несмотря на то что распылительное устройство в представленном варианте выполнения имеет два впускных канала для текучих сред, следует иметь в виду, что могут быть использованы дополнительные впускные каналы для случаев, где в смесь должны включаться дополнительные текучие среды, и что изобретение может быть использовано для мониторинга работы распылительного устройства с тремя или более впускными каналами для текучих сред.

Как показано на Фиг.2, у впускных каналов 11, 12 имеются штуцеры или соединители 17, 18 для подсоединения труб, по которым подаются текучие среды. Внутри распылительного устройства 10 находится смесительная камера 22. Первый впускной канал 11 связан текучей средой со смесительной камерой 22 через первое отверстие 23 и, аналогично, второй впускной канал 12 соединен со смесительной камерой 22 через второе отверстие 24. Первое и второе отверстия используются для дозирования потока текучих сред в смесительную камеру и, в предпочтительном варианте выполнения, откалиброваны таким образом, что соотношение между расходом каждой из текучих сред, подаваемых в распылительное устройство, и давлением текучих сред строго определено. Первая и вторая текучие среды, подаваемые в впускные каналы 11, 12, протекают через соответствующие отверстия 23, 24 и объединяются в смесительной камере 22, где они образуют смесь, а соотношение текучих сред в смеси определено расходами текучих сред, поступающих в форсунку. Смесь поступает по трубе 31 из смесительной камеры 22 к наконечнику 14 форсунки, где смесь выбрасывается через отверстие 32 форсунки, образуя аэрозоль.

В соответствии с признаком изобретения датчик 30 давления для определения давления смеси, образующейся в распылительном устройстве 10, расположен непосредственно на распылительном устройстве с тем, чтобы обеспечить точность измерения давления. Для этого в варианте выполнения, показанном на Фиг.2, на трубе 31, соединяющей смесительную камеру с отверстием форсунки, имеется окно 34. Конфигурация окна 34 выбрана таким образом, что в него можно установить датчик 30 давления, как это показано на Фиг.3. В другом варианте выполнения датчик 30 давления может быть установлен на корпусе распылительного устройства 10 так, что датчик давления находится в непосредственной связи посредством текучей среды со смесительной камерой 22. Датчик давления 30 выбирается таким образом, чтобы выдерживать давление смеси в распылительном устройстве и обладать достаточной чувствительностью для обеспечения точных измерений давления смеси. Подходящим датчиком давления может быть, например, датчик давления Model OT-1, выпускаемый фирмой WIKA Alexander Wiegand GmbH&Co. KG, в Клингенберге, Германия.

Возвращаясь к Фиг.1, отметим, что для измерения давлений первой и второй текучих сред, поступающих в распылительное устройство 10, на трубопроводах 39, 40, подающих текучие среды к распылительному устройству 10, установлены датчики 37, 38 давления. В предпочтительном варианте выполнения датчики 37, 38 установлены вблизи впускных каналов 11, 12, с тем чтобы их показания отражали действительные величины давлений текучих сред, поступающих в распылительное устройство. Три датчика 37, 38, 30 давления подсоединены к контроллеру 20 таким образом, что контроллер получает выходные сигналы датчиков давления, которые отражают измеренные давления первой и второй текучих сред и смеси в распылительном устройстве соответственно.

В соответствии с признаком изобретения мониторинг работы распылительного устройства 10 осуществляется контроллером 20 посредством сравнения измеренной фактической величины давления смеси с прогнозируемым давлением смеси, которое вычисляется с использованием измеренных давлений текучих сред на входе. Прогнозируемое давление смеси рассчитывается с использованием эмпирической формулы, которая описывает соотношение между ожидаемым давлением смеси и входными давлениями текучих сред. Точный вид этой формулы может быть определен или выбран на основе анализа соответствующей динамики текучей среды и нахождения наиболее точного соответствия данных измерения с формулой.

Например, в одном варианте выполнения для предсказания давления смеси используется следующая формула с несколькими линейными параметрами:

В этой формуле Pair обозначает измеренное давление воздуха, Pwater обозначает измеренное давление воды и Рmix обозначает прогнозируемое давление смеси в распылительном устройстве. Эта формула содержит параметры b1, b2, b3 и b4, которые должны быть определены экспериментально. Показатель степени х представляет собой постоянное число, например 0,5. Было установлено, что эта формула представляет достаточно хорошую модель для прогнозирования давления смеси при известном давлении текучих сред на входе. Следует понимать, однако, что эта формула является только одной из различных форм уравнений, которые могут быть использованы, и изобретение не ограничено конкретным видом этой формулы. Кроме того, хотя использование линейного соотношения обладает преимуществом вычислительной эффективности, также могут быть использованы и нелинейные уравнения для моделирования создания смеси в распылительном устройстве, если такие уравнения смогут более точно прогнозировать давление смеси и если контроллер обладает достаточными вычислительными возможностями для выполнения расчетов, необходимых для решения нелинейных уравнений.

Согласно особенности изобретения параметры в формуле в уравнении (1) для расчета давления смеси могут быть определены контроллером 20, когда распылительное устройство находится в рабочем режиме, то есть установлено в своем штатном рабочем положении. Для определения параметров на этапе получения сведений варьируются давления текучих сред на входе, и измеренные значения давлений первой и второй текучих сред и смеси используются как исходные данные для определения параметров. В предпочтительном варианте выполнения эта операция получения сведений выполняется, когда распылительное устройство первый раз включается при вводе в эксплуатацию, в предположении, что на этом этапе форсунка работает точно так, как должна работать в штатном режиме. Когда на этапе обучения параметры формулы для прогнозирования давления смеси определены, они могут быть использованы контроллером 20 в дальнейшей работе распылительного устройства для расчета ожидаемого давления смеси на основе измеренных давлений текучих сред на входе. Величина ожидаемого давления смеси затем может быть использована для сопоставления с измеренным фактическим давлением для определения правильности функционирования распылительного устройства.

В одном из вариантов выполнения получение параметров эмпирической формулы производится с использованием рекурсивного алгоритма оценки по методу наименьших квадратов, выраженного следующими уравнениями:

K(t)=Q(t)ψ(t)

где y(t) = измеренное давление смеси в момент t;

= прогноз измеренного давления смеси в момент t на основе информации, полученной до момента t;

P(t) = обратная ковариационная матрица;

ψ(t) = входные значения (измеренные на входе величины давления воздуха и воды);

θ(t) = вектор параметров (b1, b2, b3, b4);

λ(t) = фактор отсутствия последействия (=1).

После того как параметры в формуле давления смеси определены с использованием рекурсивного алгоритма оценки по методу наименьших квадратов, формула может быть использована контроллером 20 для мониторинга работы распылительного устройства. Когда контроллер 20 обнаруживает значительные отклонения измеренного давления смеси в распылительном устройстве от прогнозируемого или ожидаемого давления смеси и если это отклонение сохраняется достаточно долгое время, контроллер вырабатывает сигнал отказа для привлечения внимания оператора технологической линии с тем, чтобы возможная причина отклонения была установлена и распылительное устройство могло быть отремонтировано или, при необходимости, заменено.

В варианте выполнения используется комбинация статического и динамического алгоритмов для определения необходимости выдачи сигнала неисправности. В такой процедуре определения неисправности измерения производятся периодически через регулярные интервалы. Для каждого интервала измерения рассчитывается состояние Si статической ошибки в определенный момент (ti) времени следующим образом:

Рmmi: измеренное давление смеси в момент i

Pabs: максимальная абсолютная ошибка

Еrel: максимальная относительная ошибка (в %)

Абсолютный отказ: Рerr i=Pmix i-Pmm i

Относительный отказ 1: Pr1 i=Pmix i·Erel

Относительный отказ 2: Рr2 imm i·Еrel

Состояние ошибки в момент времени ti равно: Si=(|Perr i|>Pabs)+(|Perr i|>Pr1 i)+(|Perr i|>Pr2 i).

Таким образом, состояние Si статической ошибки определяется по трем пороговым уровням: заранее выбранному фиксированному уровню Pabs и двум переменным уровням Рr1 i и Рr2 i, которые зависят от измеренных значений давления жидкости на входе. Значения Pabs и Еrel выбираются в зависимости от точности датчиков и стабильности сигналов. Значение Pabs разумно выбрать, например, в три раза больше среднеквадратического отклонения Рerr, измеренного в большом числе точек (например, 1000) в нормальных условиях работы форсунки. В этом случае Pabs рассчитывается с использованием следующих уравнений:

Вид ошибки, вызывающей отклонения давления, зависит от знака Рerr. Если знак положительный, измеренное фактическое давление ниже предсказанного давления. Это может произойти, если либо засорились калиброванные отверстия, либо произошел износ наконечника. С другой стороны, если знак отрицательный, измеренное давление выше, чем прогнозируемое давление, что может случиться, если либо калиброванные отверстия подверглись износу, либо засорился наконечник. Таким образом, в зависимости от знака Рerr, может быть установлена причина отклонения давления.

Далее рассчитывается состояние (Di) динамической ошибки с использованием следующего алгоритма:

Если sign(Perr i)≠Sign(Perr i-1), тогда Di ложно (состояние исправности).

Если Si ложно для, по крайней мере, Тgood, тогда Di ложно (состояние исправности).

Если Si истинно для, по крайней мере, Tbad, тогда Di истинно (состояние отказа).

При таком порядке определения Di признается истинным, только когда состояние Si статической ошибки было истинным в течение заданного промежутка Tbad времени. Это делается с тем, чтобы снизить вероятность того, что измеренное отклонение давления вызвано шумами или флуктуациями давлений жидкости либо сигналов с датчиков давления. Если состояние Di динамической ошибки истинно, контроллер 20 определяет, что имеет место состояние отказа, и выдает сигнал отказа, показывая, что распылительное устройство не функционирует должным образом.

Должны быть также выбраны следующие факторы, используемые в принятии упомянутых решений, зависящие от динамики системы:

- Tgood: время, необходимое для констатации состояния исправности при наличии нормальных результатов измерений

- Tbad: время, необходимое для констатации состояния отказа при наличии отклонений в результатах измерений.

Процесс настройки распылительного устройства 10 и контроллера 20, а также дальнейшего процесса мониторинга обобщен в блок-схеме на Фиг.4. Сначала распылительное устройство 10 устанавливается в свое штатное рабочее положение (шаг 40). Затем под управлением контроллера производится получение сведений для определения параметров в эмпирической формуле, которые должны быть использованы для прогнозирования давления смеси (шаг 41). После этого в процессе нормальной работы распылительного устройства контроллер непрерывно производит мониторинг работы. В каждом цикле определения состояния на контроллер с датчиков давления поступают измеренные сигналы давления жидкостей на входе и смеси (шаг 42). Контроллер использует измеренные давления жидкостей на входе в качестве исходных параметров в эмпирической формуле для расчета прогнозируемого давления смеси (шаг 43). Состояние Si статической ошибки для цикла определения состояния устанавливается на основании измеренных и рассчитанных значений давления (шаг 44). Затем рассчитывается состояние Di динамической ошибки с использованием текущих и прошлых значений переменной состояния статической ошибки (шаг 45). Если состояние Di динамической ошибки истинно (шаг 46), контроллер вырабатывает сигнал отказа, показывающий, что распылительное устройство не функционирует нужным образом (шаг 47).

С учетом большого числа возможных вариантов выполнения, в которых могут быть использованы принципы данного изобретения, следует иметь в виду, что описанные здесь со ссылками на чертежи варианты выполнения приведены только для иллюстрации и не должны восприниматься как ограничивающие область притязаний изобретения. Поэтому описанное здесь изобретение предполагает все подобные варианты выполнения попадающими в пределы области притязаний приведенной ниже формулы и ее эквивалентов.

1. Способ мониторинга работы распылительного устройства, на которое подают по меньшей мере первую и вторую текучие среды с образованием посредством него аэрозоли из смеси по меньшей мере первой и второй текучих сред, отличающийся тем, что измеряют фактическое давление смеси первой и второй текучих сред, образованной в распылительном устройстве, измеряют первое давление на входе первой жидкости и второе давление на входе второй жидкости, подаваемых на распылительное устройство, вычисляют прогнозируемое давление смеси по первому и второму давлениям на входе с использованием эмпирической формулы и определяют на основе сравнения прогнозируемого значения и фактического значения смеси правильность работы распылительного устройства.

2. Способ по п.1, отличающийся тем, что первая текучая среда является воздухом, а вторая текучая среда является водой.

3. Способ по п.1, отличающийся тем, что при измерении фактического давления смеси получают показания от датчика давления, установленного на распылительном устройстве.

4. Способ по п.1, отличающийся тем, что эмпирическая формула представляет собой линейное уравнение, включающее эмпирически полученные параметры.

5. Способ по п.1, отличающийся тем, что при определении правильности функционирования определяют состояние статической ошибки на основании отклонения фактического давления смеси от предсказанного давления и определяют состояния динамической ошибки на основании значений состояния статической ошибки за заданный промежуток времени.

6. Способ по п.1, отличающийся тем, что дополнительно определяют параметры эмпирической формулы по измеренным значениям первого и второго давлений на входе и фактического давления смеси.

7. Способ по п.6, отличающийся тем, что при определении параметров выполняют рекурсивный анализ по методу наименьших квадратов с согласованием измеренных значений первого и второго давлений на входе и фактического давления смеси с эмпирической формулой.

8. Система мониторинга работы распылительного устройства, отличающаяся тем, что она содержит распылительное устройство, имеющее по меньшей мере первый канал для первой текучей среды и второй канал для второй текучей среды, внутреннюю камеру смешивания первой и второй текучих сред, образующих смесь внутри распылительного устройства, и наконечник форсунки с отверстием для выброса смеси с образованием аэрозоли, датчик смеси, соединенный с распылительным устройством, являющийся средством измерения фактического давления смеси в смеси в распылительном устройстве, первый входной датчик, являющийся средством измерения давления первой текучей среды, поступающей в распылительное устройство, второй входной датчик, являющийся средством измерения давления второй текучей среды, поступающей в распылительное устройство, контроллер, соединенный с датчиком смеси и первым и вторым входными датчиками с возможностью получения показаний, отражающих измеренные давления смеси и первой и второй текучих сред, при этом контроллер является средством вычисления прогнозируемого давления смеси на основании измеренных давлений первой и второй текучих сред с использованием эмпирической формулы и выполнения сравнения прогнозируемого давления смеси и фактического давления для определения правильности работы распылительного устройства.

9. Система по п.8, отличающаяся тем, что датчик смеси установлен на распылительном устройстве.

10. Система по п.8, отличающаяся тем, что первая текучая среда является воздухом, а вторая текучая среда является водой.

11. Система по п.8, отличающаяся тем, что эмпирическая формула представляет линейное уравнение, включающее экспериментально найденные параметры.

12. Система по п.11, отличающаяся тем, что контроллер дополнительно является средством выведения параметров эмпирической формулы из измеренных значений первого и второго входных давлений и фактического давления смеси.

13. Система по п.12, отличающаяся тем, что контроллер является средством сравнения, включающего определение состояния статической ошибки на основе отклонения фактического давления смеси от прогнозируемого давления смеси и определение состояния динамической ошибки на основе значений состояния статической ошибки за заданный промежуток времени.

14. Распылительное устройство, отличающееся тем, что оно содержит первый впускной канал подвода первой текучей среды, второй впускной канал подвода второй текучей среды, смесительную камеру, установленную с возможностью перемешивания первой и второй текучих сред с образованием смеси, наконечник форсунки с отверстием для выбрасывания смеси с образованием аэрозоли и датчик давления, установленный на распылительном устройстве с возможностью измерения давление смеси.

15. Устройство по п.14, отличающееся тем, что оно содержит трубу, соединяющую смесительную камеру с наконечником форсунки, при этом датчик давления установлен на трубе.



 

Похожие патенты:

Изобретение относится к экспериментальной гидродинамике дисперсных потоков и может быть использовано в двигателестроении для определения дисперсных характеристик топливовоздушных струй, по которым можно судить о распределении капель струи по размерам.

Изобретение относится к экспериментальной гидродинамике аэродисперсных потоков и может быть использовано для определения качества распыливания топлива при безмоторных испытаниях элементов топливной аппаратуры, в частности распылителя.

Изобретение относится к экспериментальной гидродинамике дисперсных потоков и может быть использовано в двигателестроении для определения дисперсных характеристик топливо-воздушных струй.

Изобретение относится к окрасочному оборудованию и может быть использовано для автоматического нанесения лакокрасочных покрытий на изделия различной конфигурации , перемещаемые конвейером.

Изобретение относится к устройствам для распыления жидкостей и является усовершенствованием стенда для испытания и регулировки распылителей по а.с. .

Изобретение относится к способам для измерения гидравлических параметров жидкостных форсунок. .

Изобретение относится к распылению текучих сред и может быть использовано при моделировании процесса выделения влаги из сжатого газа в различных производственных процессах.

Изобретение относится к устройствам для измерения толщины нанесенных лакокрасочных материалов методом пневматического распыла и может быть использовано на предприятиях различных отраслей промышленности.

Изобретение относится к с/х производству и может быть использовано в растениеводстве для подготовки опрыскивателей к работе. .

Изобретение относится к способу и системе распределения жидкости, которая может переключаться между режимом распределения и режимом циркуляции

Изобретение относится к способу и системе, используемым для мониторинга и обнаружения закупорки в трубопроводе, подающем твердые вещества, жидкости и/или газы в движущийся поток газа. Система включает трубопровод или камеру с отверстием в стенке, удлиненную пику, расположенную в отверстие в стенке, соединяющуюся по текучей среде с рабочим материалом, а также с внутренней частью трубопровода или камеры в точке пересечения с частью газового потока, при этом в каждой пике образован продольный канал, по которому осуществляется соединение по текучей среде, и детектирующее устройство, связанное с датчиком температуры и пикой. Детектирующее устройство включает горячий провод, обладающий заранее заданной температурой, так что увеличение температуры, измеренное этим датчиком, в сравнении с заданной температурой указывает на снижение скорости подачи рабочего материала, причем снижение достаточно значительно для того, чтобы указывать на закупорку. Способ определения наличия закупорки в канале, который частично погружен в поток газа, включает определение скорости подачи или параметра-индикатора скорости подачи рабочего материала и наблюдение за скоростью подачи или за параметром-индикатором скорости подачи для обнаружения снижения скорости подачи. Изобретение обеспечивает эффективное обнаружение закупорок в канале подачи рабочего материала. 2 н. и 5 з.п. ф-лы, 2 ил., 1 табл., 1 пр.

Изобретение относится к дезинфицирующему устройству общего характера с использованием озона, более конкретно изобретение относится к дезинфицирующему устройству с использованием озона, которое подходит для обработки пищи, хотя может быть применено и в других областях. Дезинфицирующее устройство с использованием озона включает смеситель, имеющий в общем полый корпус с входом для воды под давлением, распылительную форсунку для создания в общем конического факела распыла воды, подводимой через вход для воды, камеру контакта, сообщающуюся с входом для газов, обогащенных озоном, и выходное отверстие из камеры контакта, которое соосно распылительной форсунке и отделено от нее на некоторое расстояние. Электронное устройство отслеживания расхода отслеживает величину расхода воды через распылительную форсунку по вибрации, вызываемой водой, протекающей через смеситель. Электронное устройство отслеживания расхода предпочтительно расположено в кармане, выполненном в смесителе, и предпочтительно включает пьезоэлектрический датчик, введенный по меньшей мере по его периметру в затвердевающий материал. Изобретение обеспечивает устройство, которое при использовании распыляет воду с эффективным и подходящим количеством озона в ней. 13 з.п. ф-лы, 8 ил.

Дождевальный аппарат дождевальной машины для полива сельскохозяйственных культур содержит корпус распылителя с головкой. На дождевателе жестко закреплены электромотор с червячной передачей для поворота головки дождевального аппарата вокруг своей оси на любой градус от 0° до 360° для разбрызгивания воды по поверхности почвы и электромотор с выдвижным штоком, позволяющий путем дозированного открытия или закрытия входного отверстия головки дождевателя регулировать расход подаваемой воды. Управление электромоторами осуществляет процессор. Технический результат - повышение равномерности увлажнения почвы. 1 ил.

Изобретение относится к модулю сброса давления и к системе циркуляции краски, включающей в себя модуль сброса давления. В частности, относится к предохранительному клапану для системы циркуляции текучей среды и к системе циркуляции краски, содержащей магистраль подачи краски под давлением, магистраль возврата краски в резервуар и предохранительный клапан. Система циркуляции краски содержит магистраль подачи краски под давлением, магистраль возврата краски в резервуар и модуль сброса давления. Модуль сброса давления для системы циркуляции краски содержит входной порт подаваемого потока для получения подаваемого потока краски под давлением, выходной порт подаваемого потока для подачи потока краски под давлением, входной порт возвратного потока для получения возвратного потока краски низкого давления, и выходной порт возвратного потока для подачи возвратного потока краски низкого давления, первую проточную камеру, соединяющую входной порт подаваемого потока с выходным портом подаваемого потока, вторую проточную камеру, соединяющую входной порт возвратного потока с выходным портом возвратного потока, отверстие, соединяющее первую проточную камеру со второй проточной камерой, и элемент затвора, смещенный с прижатием к отверстию для его блокировки, причем элемент затвора выполнен с возможностью его перемещения в ответ на превышение давления в первой проточной камере заданной величины сброса давления для смещения элемента затвора с открытием отверстия для обеспечения протекания краски из первой проточной камеры во вторую проточную камеру, причем модуль сброса давления дополнительно содержит корпус, первую проточную камеру и вторую проточную камеру, образующие проточные каналы в корпусе и разделенные общей разделительной стенкой, и при этом отверстие расположено в общей разделительной стенке. Изобретение обеспечивает улучшенную систему циркуляции краски с модулем сброса давления. 3 н. и 8 з.п. ф-лы, 5 ил.
Наверх