Способ управления газотурбинной установкой

Изобретение относится к области газотурбинного двигателестроения и может быть использовано в электронно-гидромеханических системах (САУ) автоматического управления ГТУ. Сущность изобретения заключается в том, что дополнительно на работающем двигателе сравнивают рассогласование между заданным и измеренным положениями НА с первой и второй наперед заданными величинами, определяемыми расчетно-экспериментальным путем, если рассогласование становится больше первой наперед заданной величины, формируют предупредительную сигнализацию оператору «Неисправность НА» и выполняют снижение режима работы ГТУ до минимального и последующий нормальный останов ГТУ, если рассогласование становится меньше второй наперед заданной величины, формируют аварийную сигнализацию оператору «Экстренный останов» и независимо от режима работы ГТУ выполняют экстренный останов ГТУ. Технический результат изобретения - повышение надежности работы ГТУ за счет повышения контролируемости САУ. 1 ил.

 

Изобретение относится к области газотурбинного двигателестроения и может быть использовано в электронно-гидромеханических системах (САУ) автоматического управления газотурбинными установками (ГТУ) различного назначения.

Известен способ управления ГТУ, заключающийся в том, что по измеренной частоте вращения ротора двигателя по известной зависимости формируют заданное положение лопаток входного направляющего аппарата (ВНА) компрессора двигателя, в соответствии с ним до заданной частоты вращения удерживают лопатки ВНА в положении «закрыто», после выхода двигателя на режимы, где частота вращения выше заданной, устанавливают лопатки ВНА в положении «открыто», Черкасов Б.А. «Автоматика и регулирование ВРД», М., «Машиностроение», 1965 г., с.22-23.

Недостатком известного способа является его низкая эффективность с точки зрения обеспечения требуемых запасов газодинамической устойчивости (ГДУ) компрессора и, как следствие, невозможность использования для управления современными ГТУ, созданными на базе авиационных турбореактивных двигателей, с высокой степенью двухконтурности (ТРДД), такими, например, как ГТУ-25 разработки ОАО «Авиадвигатель», г.Пермь, выполненной на базе авиационного двигателя ПС-90А2.

Наиболее близким к данному изобретению по технической сущности является способ управления ГТУ, заключающийся в том, что по измеренной частоте вращения ротора двигателя и температуре воздуха на входе в двигатель формируют значение приведенной частоты вращения ротора двигателя, по ней по известной зависимости формируют заданное положение лопаток направляющего аппарата (НА) компрессора двигателя, сравнивают его с измеренным положение лопаток НА, по величине рассогласования между заданным и измеренным положениями НА формируют управляющее воздействие на привод лопаток НА, Бодлер В.А., Рязанов Ю.А, Шаймарданов Ф.А. «Системы автоматического управления двигателями летательных аппаратов», М., «Машиностроение», 1973, с.181, рис.4, 6.

Недостатком этого способа является следующее.

При отказе САУ, приводящем к неуправляемости лопаток НА (например, при отказе электрогидропреобразователя, преобразующего электрический сигнал в гидравлическую команду на перекладку гидроцилиндров привода лопаток НА), нарушается соответствие между располагаемым расходом топлива в камеру сгорания (КС) двигателя и требуемым расходом воздуха через газовоздушный тракт двигателя.

Это может привести к забросу параметров газогенератора (например, температуры газов перед турбиной) или к потере газодинамической устойчивости компрессора ГТУ - помпажу, т.е. к работе ГТУ на нерасчетных режимах газогенератора, что чревато возможностью повреждения элементов проточной части двигателя с последующим выходом ГТУ из строя.

Это, в свою очередь, приводит к снижению надежности работы ГТУ и, как следствие, снижению безопасности работы газоперекачивающего агрегата (ГТЭС), газотурбинной энергоустановки (ГТЭС) или силовой установки морского судна с газотурбинной силовой установкой - в зависимости от того, где применяется ГТУ в качестве силового привода.

Целью изобретения является повышение качества работы САУ и, как следствие, повышение надежности ГТУ и безопасности ГПА, ГТЭС, газотурбохода.

Поставленная цель достигается тем, что в способе управления ГТУ, заключающемся в том, что по измеренной частоте вращения ротора двигателя и температуре воздуха на входе в двигатель формируют значение приведенной частоты вращения ротора двигателя, по ней по известной зависимости формируют заданное положение лопаток НА компрессора двигателя, сравнивают его с измеренным положением лопаток НА, по величине рассогласования между заданным и измеренным положениями НА формируют управляющее воздействие на привод лопаток НА, дополнительно на работающем двигателе сравнивают рассогласование между заданным и измеренным положениями НА с первой и второй наперед заданными величинами, определяемыми расчетно-экспериментальным путем, если рассогласование становится больше первой наперед заданной величины, формируют предупредительную сигнализацию оператору «Неисправность НА» и выполняют снижение режима работы ГТУ до минимального и последующий нормальный останов ГТУ, если рассогласование становится меньше второй наперед заданной величины, формируют аварийную сигнализацию оператору «Экстренный останов» и независимо от режима работы ГТУ выполняют экстренный останов ГТУ.

Устройство содержит последовательно соединенные первый блок 1 датчиков (БД), блок 2 управления двигателем (БУД), блок 3 управления дозирующим агрегатом (БУШДГ), дозирующий агрегат 4 (ДГ), стопорный клапан 5 (СКВ), причем ДГ 4 подключен к БД 1, а СКВ 5 - к БУД 2, к БУД 2 подключен пульт 6 управления ГТУ (ПУ), агрегат 7 исполнительных клапанов (АИК), вход которого подключен к выходу БУД 2.

Устройство работает следующим образом.

Оператор, управляющий ГТУ, с помощью ПУ 6 задает режим работы ГТУ: запуск, холостой ход, номинальный режим, максимальный режим, перегрузочный режим.

Команда оператора от ПУ 6 по цифровому каналу связи (например, RS 485 или Ethernet) передается в БУД 2. БУД 2 в соответствии с полученной от ПУ 6 командой по сигналам датчиков из БД 1 по известным зависимостям (см., например, книгу Кеба И.В. «Летная эксплуатация вертолетных ГТД», М., «Транспорт», 1976 г., с.117-135) вычисляет потребный расход топлива в КС ГТУ и с помощью БУШДГ 3 и ДГ 4 поддерживает режим работы ГТУ, изменяя расход топлива в КС ГТУ.

В частности, в БУД 2 с помощью БД 1 измеряют частоту вращения силовой турбины, сравнивают заданное и измеренное значения частоты вращения силовой турбины, в зависимости от рассогласования между заданным и измеренным значениями частоты вращения силовой турбины управляют расходом топлива в КС ГТУ.

При работе ГТУ СКВ 5 находится в положении «Открыт».

Дополнительно на всех режимах работы ГТУ от минимального до максимального в БУД 2 с помощью БД 1 измеряют температуру (Твх) воздуха на входе в двигатель и частоту вращения ротора двигателя (n), по измеренным значениям формируют приведенную частоту (nпр) вращения ротора двигателя.

Далее по приведенной частоте (nпр) вращения ротора двигателя в БУД 2 по известной зависимости формируют заданное положение НА (α на зад.) для данного режима работы двигателя. Примеры такой зависимости приведены, например, в книге Кеба И.В. «Летная эксплуатация вертолетных ГТД», М., «Транспорт», 1976 г., с.30-47.

Величину α на зад. в БУД 2 сравнивают с измеренным в БД 1 положением НА и по величине рассогласования между заданным и измеренным значениями формируют управляющее воздействие БУД 2 и осуществляют управление НА с помощью АИК 7.

При исправной САУ фактическое положение НА отличается от заданного практически только на динамических режимах: т.к. величина α на зад. определяется по приведенной частотой вращения ротора ГТУ, которая изменяется плавно, то величина рассогласования в динамически отлаженной системе определяется в определяющей степени транспортным запаздыванием в цепи управления НА.

Поэтому в БУД 2 дополнительно на работающем двигателе сравнивают рассогласование между заданным и измеренным положениями НА с первой и второй наперед заданными величинами, определяемыми расчетно-экспериментальным путем. Если рассогласование становится больше первой наперед заданной величины (для ГТУ-25 разработки ОАО «Авиадвигатель» эта величина составляет 20 градусов), в БУД 2 формируют выдаваемую на экран монитора оператора ПУ 6 предупредительную сигнализацию оператору «Неисправность НА», и по командам БУД 2 с помощью БУШДГ 3 и ДГ 4 выполняют снижение режима работы ГТУ до минимального, после этого по команде БУД 2 с помощью СКВ 5 выполняют нормальный останов ГТУ. Если рассогласование становится меньше второй наперед заданной величины (для ГТУ-25 эта величина составляет минус 7 градусов), в БУД 2 формируют выдаваемую на экран монитора оператора ПУ 6 аварийную сигнализацию оператору «Экстренный останов» и независимо от режима работы ГТУ по команде БУД 2 с помощью СКВ 5 выполняют экстренный останов ГТУ.

Таким образом, обеспечивается повышение качества работы САУ и, как следствие, повышение надежности ГТУ и безопасности ГПА, ГТЭС, газотурбохода.

Способ управления газотурбинной установкой, заключающийся в том, что по измеренной частоте вращения ротора двигателя и температуре воздуха на входе в двигатель формируют значение приведенной частоты вращения ротора двигателя, по ней по известной зависимости формируют заданное положение лопаток направляющего аппарата (НА) компрессора двигателя, сравнивают его с измеренным положение лопаток НА, по величине рассогласования между заданным и измеренным положениями НА формируют управляющее воздействие на привод лопаток НА, отличающийся тем, что дополнительно на работающем двигателе сравнивают рассогласование между заданным и измеренным положениями НА с первой и второй наперед заданными величинами, определяемыми расчетно-экспериментальным путем, если рассогласование становится больше первой наперед заданной величины, формируют предупредительную сигнализацию оператору «Неисправность НА» и выполняют снижение режима работы ГТУ до минимального и последующий нормальный останов ГТУ, если рассогласование становится меньше второй наперед заданной величины, формируют аварийную сигнализацию оператору «Экстренный останов» и независимо от режима работы ГТУ выполняют экстренный останов ГТУ.



 

Похожие патенты:

Изобретение относится к энергетике. Способ управления рабочей точкой газовой турбины, включающий определение коэффициента давления турбины, вычисление эталонной пороговой кривой перехода из режима горения в первичной зоне в режим горения в первичной и вторичной зонах как функции от коэффициента давления турбины, определение в первый момент времени, когда температура выхлопного газа, соответствующая рабочей точке, выше температуры выхлопного газа на эталонной пороговой кривой перехода из режима горения в первичной зоне в режим горения в первичной и вторичной зонах для одного и того же коэффициента давления турбины, и изменение, через заранее заданный интервал времени после первого момента времени, параметра распределения топлива с первого значения на второе значение, если температура выхлопного газа, соответствующая рабочей точке, остается выше температуры выхлопного газа на эталонной пороговой кривой перехода из режима горения в первичной зоне в режим горения в первичной и вторичной зонах. Также представлен контроллер для управления рабочей точкой газовой турбины согласно способу. Изобретение позволяет обеспечить более точное управление газовой турбиной. 2 н. и 8 з.п. ф-лы, 1 табл., 15 ил.

Изобретение относится к энергетике. Способ управления рабочей точкой газовой турбины, содержащей компрессор, камеру сгорания и турбину. Способ включает определение давления выхлопного газа на выходе турбины, измерение давления на выходе компрессора, определение коэффициента давления турбины на основе давления выхлопного газа турбины и давления на выходе компрессора; вычисление температуры выхлопного газа на выходе турбины как функции от коэффициента давления турбины, определение эталонной кривой температуры выхлопного газа в плоскости, заданной температурой выхлопного газа и коэффициентом давления турбины, и управление газовой турбиной для удержания рабочей точки на эталонной кривой температуры выхлопного газа. Также представлена газовая турбина, имеющая управляющее устройство для управления рабочей точкой газовой турбины согласно способу. Изобретение позволяет обеспечить более точное управление газовой турбиной. 2 н. и 8 з.п. ф-лы, 9 ил., 1 табл.

Изобретение относится к энергетике. Способ управления рабочей точкой газовой турбины, содержащей компрессор, камеру сгорания и турбину. Способ включает вычисление эталонной кривой температуры выхлопного газа турбины как функции от коэффициента давления турбины, управление параметром распределения топлива. Также представлен контроллер для управления рабочей точкой газовой турбины. Изобретение позволяет обеспечить более точное управление температурой горения, более точное управление параметрами горения, более точное управление выбросом выхлопного газа. 2 н. и 11 з.п. ф-лы, 21 ил., 1 табл.

Изобретение относится к энергетике. Способ управления рабочей точкой газовой турбины, содержащей компрессор, камеру сгорания и турбину, включающий шаг определения давления выхлопного газа на выходе турбины, шаг измерения давления на выходе компрессора, шаг определения коэффициента давления турбины на основе давления выхлопного газа и давления на выходе компрессора, шаг вычисления эталонной пороговой кривой перехода из режима горения в первичной зоне в режим горения в первичной и вторичной зонах как функции от коэффициента давления турбины, при этом пороговая кривая перехода из режима горения в первичной зоне в режим горения в первичной и вторичной зонах содержит точки, в которых работа газовой турбины изменяется между режимом горения в первичной зоне в режим горения в первичной и вторичной зонах, и шаг управления газовой турбиной для перехода между режимом горения в первичной зоне и режимом горения в первичной и вторичной зонах. Также представлена газовая турбина, содержащая контроллер для управления рабочей точкой газовой турбины согласно способу. Изобретение позволяет обеспечить более точное управление газовой турбиной. 2 н. и 8 з.п. ф-лы, 13 ил.

Изобретение относится к энергетике. Способ управления заклиненным сопловым аппаратом, установленным между первой и второй турбинами, соединенными последовательно с компрессором. Способ включает определение, заклинен ли сопловой аппарат; подачу команды первой турбине увеличить минимальное опорное значение скорости, если сопловой аппарат заклинен; проверку, продолжает ли сопловой аппарат оставаться заклиненным; подачу команды компрессору увеличить поток отбираемого на вход тепла от текущей величины до максимальной величины, если сопловой аппарат заклинен; проверку, продолжает ли сопловой аппарат оставаться заклиненным; и подачу команды компрессору увеличить угол входного направляющего аппарата от текущей величины до максимальной величины, если сопловой аппарат заклинен. Также представлены система для устранения заклинивания сопел и машиночитаемый носитель, содержащий выполняемые компьютером команды, которые при их выполнении реализуют способ согласно изобретению. Изобретение позволяет устранить заклинивание соплового механизма. 3 н. и 7 з.п. ф-лы, 7 ил.

Группа изобретений относится к способу управления турбомашиной, запоминающему устройству и электронному блоку. Способ включает в себя: этап, на котором измеряют первую температуру (Т25) посредством первого датчика температуры; этап, на котором измеряют вторую температуру (Т3) посредством второго датчика температуры; этап, на котором оценивают третью температуру (Т25М), моделирующую упомянутую первую температуру; и этап, на котором определяют, по меньшей мере, одну уставку управления, по меньшей мере, для одного компонента оборудования, имеющего изменяемую геометрию, двигателя в зависимости от упомянутой измеренной первой температуры; причем способ отличается тем, что упомянутый первый датчик имеет первую постоянную С1 времени, которая больше, чем постоянная С2 второго датчика, и способ дополнительно включает в себя: этап, на котором обнаруживают всасывание воды или града в зависимости от падения упомянутой измеренной второй температуры; и при обнаружении всасывания воды или града этап, на котором определяют упомянутую уставку управления в зависимости от упомянутой оцененной третьей температуры. Технический результат изобретения - предупреждение помпажа в случае нарушения измерения температуры. 3 н. и 3 з.п. ф-лы, 3 ил.

Предлагаются электростанция (1) и способ эксплуатации такой электростанции. Электростанция (1) содержит газотурбинный двигатель (2) с компрессором (5), заборным устройством компрессора (66), камерой сгорания (6, 7) и турбиной (8, 9). Система (4) рециркуляции отработавшего газа для возврата части отработавшего в газовой турбине газа на впуск (18) компрессора газовой турбины (2) и котел-утилизатор (3). Заборное устройство (66) компрессора содержит сектор (64) впуска свежего воздуха и сектор (65) впуска отработавшего газа. В компрессоре (5) и/или в заборном устройстве (66) компрессора установлен общий управляющий элемент (37, 38) для управления потоком свежего воздуха (61) и рециркуляционным потоком отработавшего газа (69). В заборном устройстве (66) компрессора предусмотрено физическое разделение между потоком свежего воздуха (61) и рециркуляционным потоком отработавшего газа (69) или свободный путь между физическим разделением потока свежего воздуха (61) и рециркуляционным потоком отработавшего газа (69) в заборном устройстве (66) компрессора и впуском (18) компрессора, слишком короток для возникновения существенных поперечных потоков от одного пути к другому или для существенного смешивания потоков. Рециркуляция выпускных газов улучшает эффективность двигателя на этапе частичной нагрузки, во время которой имеет место только использование наружной температуры воздуха, входящего в компрессор, а также управляемое применение рециркуляции выпускных газов улучшает динамический отклик двигателя на изменение в выходной мощности и позволяет спрогнозировать снижение эмиссии загрязняющих газов, таких как оксид азота из компрессора. 3 н. и 14 з.п. ф-лы, 2 ил.

Газотурбинный двигатель содержит поворотную регулируемую входную направляющую лопатку, расположенную перед компрессором низкого давления. Угол наклона входной направляющей лопатки устанавливается при запуске двигателя таким образом, чтобы увеличить воздушный поток, поступающий в компрессор. Это является особенно полезным при повторном запуске газотурбинного двигателя, когда оснащенный им летательный аппарат находится в воздухе, и предназначено для того, чтобы увеличить скорость вращения компрессора и турбинных роторов в режиме авторотации. Раскрыты также способ запуска газотурбинного двигателя и сопло с изменяемой площадью поперечного сечения. 4 н. и 16 з.п. ф-лы, 3 ил.
Наверх