Способ оценки теплофизических характеристик ограждающих конструкций зданий и сооружений, выполненных из кирпича, в зимний период по результатам испытаний в натурных условиях

Использование: в строительстве для оценки теплозащитных свойств по результатам испытаний в натурных условиях. Технический результат: расширение диапазона определения теплофизических характеристик ограждающих конструкций. Сущность: способ оценки теплофизических характеристик ограждающих конструкций зданий и сооружений, выполненных из кирпича, в зимний период по результатам испытаний в натурных условиях включает измерение температур внутренней и наружной поверхностей конструкций в дневное время суток путем размещения датчиков в толщине ограждения. Согласно изобретению в дневное время суток при наличии солнечного излучения на поверхность ограждения по показаниям датчиков моделируют процесс появления встречных тепловых потоков в толщине ограждения с использованием направления вектора температурного градиента, при этом учитывают по показаниям температур на поверхности и в толщине ограждения характер колебаний тепловых потоков от наружного слоя ограждения во внутренние слои, определяя возникновение в толщине ограждения более прогретого слоя по сравнению с поверхностью ограждения, являющегося источником разнонаправленных тепловых потоков. 8 ил.

 

Изобретение относится к области определения теплофизических характеристик ограждающих конструкций и может быть использовано в строительстве для оценки теплозащитных свойств по результатам испытаний в натурных условиях.

Известен способ определения теплофизических характеристик путем определения таких теплофизических характеристик, как R - термическое сопротивление, определяется по формуле , где δ - толщина, а λ - теплопроводность; D=R*S, где S - теплоусвоение; R - термическое сопротивление (СНиП 23-02-2003 «Тепловая защита зданий»). Известный способ определения теплопроводности и температуропроводности путем подведения теплоты к двум идентичным образцам.

Недостатком способа является то, что возникает необходимость лабораторных исследований, отбора образцов и их теплостатирования.

Использование способа определения теплофизических характеристик материалов по R (термическому сопротивлению) и D - массивности, в отдельных случаях не может в полной мере характеризовать теплофизические качества ограждающей конструкции, так как не учитывает скорости изменения t в толще ограждения K при градиенте Δt=(tН-tВ). Скорость пропорциональна отношению Величина K, характеризующая скорость прогревания или остывания тела, есть температуропроводность. Из формулы следует, что (K) выражается в квадратных метрах на секунду (м2/с). Чем выше K, тем быстрее изменение tН - температуры наружного воздуха, приведет к изменениям τВ - температуры на внутренней поверхности ограждения, что в свою очередь неблагоприятным образом повлияет на микроклимат помещения.

Для массивных конструкций (K) не имеет столь большого значения, так как колебания tН не приводят к изменению τВ, так как затухают в толщине ограждения.

Известен способ комплексного определения теплофизических характеристик материалов, который включает измерение толщины исследуемого образца, подведение теплоты к двум идентичным образцам, поддерживание температуры на внешних поверхностях образцов, равной заданной температуре. При этом регистрируют удельную мощность источника теплоты и измеряют с постоянным шагом во времени температуру в течение всего эксперимента. Определяют на каждом шаге величину динамического параметра и сравнивают с максимальным значением, лежащим в заданном диапазоне. На первом этапе эксперимента подводят постоянную мощность к объемному источнику теплоты и по зарегистрированным данным вычисляют искомую теплопроводность. На втором этапе прекращают подвод мощности к объемному источнику теплоты и по зарегистрированным данным определяют искомую температуропроводность.

Патент РФ N2243543. Способ комплексного определения теплофизических характеристик материалов / Мищенко С.В., Пономарев С.В. Опубликовано 27.12.2004.

Недостатками известного способа являются следующие факты. В прототипе не отражено, как используется образец при отрицательных значениях tН, невозможно его использовать на действующих объектах зданий и сооружений. Такие признаки аналога, как измерение толщины исследуемого объекта, измерение с постоянным шагом во времени t в течение всего эксперимента определяемых искомых теплофизических характеристик по формулам, совпадут с существенными признаками язвленного изобретения.

Ближайшим техническим решением (прототипом) является способ оценки теплозащитных свойств наружных ограждающих конструкций зданий и сооружений в условиях нестационарной теплопередачи по результатам испытаний в натурных условиях, включающий измерение температур внутренней и наружной поверхностей конструкций с учетом величины интенсивности излучения, действующего на ограждение, моделирование процесса теплопередачи с учетом характера теплообмена между внутренней и наружными средами (патент РФ №2321845).

Недостатком прототипа является тот факт, что в изобретении производят моделирование нестационарной теплопередачи путем изменения температур на внутренней и наружной поверхности исследуемой ограждающей конструкции, что не может отразить всех реальных теплофизических процессов, происходящих в толще исследуемого ограждения с учетом реальных погодных условий, и не позволяет провести оценку теплозащитных качеств ограждающей конструкции.

Техническим результатом является расширение диапазона определения теплофизических характеристик ограждающих конструкций.

Технический результат достигается тем, что способ оценки теплофизических характеристик ограждающих конструкций зданий и сооружений, выполненных из кирпича, в зимний период по результатам испытаний в натурных условиях включает измерение температур внутренней и наружной поверхностей, а также по всей толщине конструкций путем размещения датчиков в толщине ограждения. Согласно изобретению в дневное время суток при наличии солнечного излучения на поверхность ограждения по показаниям датчиков моделируют процесс появления встречных тепловых потоков в толщине ограждения с использованием направления вектора температурного градиента, при этом учитывают по изменению температур на поверхности и в толщине ограждения характер колебаний тепловых потоков от наружного слоя ограждения во внутренние слои, определяя возникновение в толщине ограждения более прогретого слоя по сравнению с поверхностью ограждения, который является источником разнонаправленных тепловых потоков.

Рис.1 - показано одномерное температурное поле по толщине ограждения, номера точек, соответствующих установленным датчикам, и значение температур, зарегистрированных датчиками. Вектор направления теплового потока направлен противоположно вектору температурного градиента. Общая картина происходящих процессов характеризуется как стационарные условия теплопередачи.

Рис.2 - показано, как изменившиеся метеоусловия вызвали изменение направления температурного градиента, что привело к изменению направления вектора теплового потока от наружной поверхности ограждения внутрь, где в т.3 показано столкновение двух направлений векторов тепловых потоков, идущих от наружной и внутренней поверхности ограждения.

Рис.3 - показано, что вектор теплового потока от наружной поверхности продвинулся вглубь ограждения до т.4.

Рис.4 - изменение внешних погодных условий поменяло направление вектора температурного градиента, что привело к возникновению в толщине ограждения разнонаправленного теплового потока от возникшего внутри ограждения более «прогретого» слоя в точке 3.

Рис.5 - показано выравнивание температуры в точках 3, 4, что приводит процесс к стационарным условиям теплопередачи.

Рис.6 - показано полное восстановление процесса стационарной теплопередачи.

Рис.7 - показано разделение исследуемой ограждающей конструкции на условные изотермические поверхности:

Δx - расстояние между ними;

Δt=t2-t3 - изменение температуры между изотермическими поверхностями, а

- есть температурный градиент.

Рис.8 - показаны графики изменения температур по показаниям датчиков, установленных в точках 1-8 в исследуемой ограждающей конструкции в течение суток.

На оси абсцисс выделен интервал А - временной промежуток, по которому дан анализ происходящих процессов на рис.1-6.

Экспериментальные исследования проводились с помощью устройства для определения теплофизических качеств ограждающих конструкций зданий и сооружений по температуропроводности в натурных условиях (патент №94709).

Способ оценки теплофизических характеристик ограждающих конструкций зданий и сооружений, выполненных из кирпича, в зимний период по результатам испытаний в натурных условиях, включающий измерение температур внутренней и наружной поверхностей, а также по всей толщине конструкций путем размещения датчиков в толщине ограждения, отличающийся тем, что в дневное время суток при наличии солнечного излучения на поверхность ограждения по показаниям датчиков моделируют процесс появления встречных тепловых потоков в толщине ограждения с использованием направления вектора температурного градиента, при этом учитывают по изменениям температур на поверхности и в толщине ограждения характер колебаний тепловых потоков от наружного слоя ограждения во внутренние слои, определяя возникновение в толщине ограждения более прогретого слоя по сравнению с внешней поверхностью ограждения, являющегося источником разнонаправленных тепловых потоков.



 

Похожие патенты:

Изобретение относится к строительной физике и может быть использовано для исследования процессов тепломассообмена и воздухопроницаемости строительной конструкции при различных температурных режимах.

Изобретение относится к области анализа углеводородных топлив. .

Изобретение относится к измерительной технике, а именно к устройствам для определения влажности льносырья методом высушивания образца. .
Изобретение относится к теплозащитным покрытиям. .

Изобретение относится к области изготовления изделия из высоконаполненной полимерной композиции, а конкретно к способу определения живучести полимерной композиции по динамике нарастания вязкости до ее предельно допустимого значения, обеспечивающего формование монолитного изделия.

Изобретение относится к испытательной технике. .

Изобретение относится к области физики грунтов. .

Изобретение относится к определению разновидностей слюд и может быть использовано в геологоразведочном производстве и горнодобывающей промышленности, а также в тех отраслях, которые используют слюды.

Изобретение относится к области контрольно-измерительной техники, касающейся исследования, измерения и прогнозирования свойств полимерных материалов, включая композиционные материалы на полимерной основе. Заявляется термоаналитический способ определения энергии активации термодеструкции Е полимерного материала, который заключается в нагревании ряда идентичных образцов полимерного материала с разной скоростью нагрева, определении температуры, связанной с потерей массы каждого образца при нагревании, по полученным данным определяют энергию активации E1. Одновременно регистрируют тепловой поток для каждого образца полимерного материала, обусловленный процессами термодеструкции, по полученным данным определяют энергию активации Е2. За энергию активации термодеструкции полимерного материала принимают среднюю величину полученных энергий активации Е=(Е1+Е2)/2. Технический результат - повышение точности определения значения энергии активации в целях прогнозирования сроков хранения полимерных материалов; экспрессность анализа; незначительная трудоемкость. 7 ил., 1табл.

Установка предназначена для определения показателей пожарной и транспортной опасности твердых дисперсных веществ и материалов, склонных к инициированному самонагреванию/самовозгоранию и выделению горючих и/или токсичных газов. Может быть применена в решении вопросов безопасности на транспорте, в сырьевой и добывающей промышленности, где обращаются самовозгорающиеся материалы (грузы). На известных установках невозможно получение сведений о взаимосвязи величины разогрева, интенсивности и объема выделения газов с концентрацией инициатора в дисперсном материале. Установка отличается от известных изобретений тем, что, использует многокамерный термостат, в цилиндрические реакционные камеры которого помещаются образцы испытуемого материала с различной концентрацией инициатора самовозгорания, контрольно-измерительная автоматическая система термостатирования камер обеспечивает проведение опыта при заданной температуре, компенсацию потерь тепла самонагревающейся массы через стенки камеры и измерение величины разогрева. При этом осуществляется контроль газового состава в слое дисперсного материала и в свободном пространстве каждой камеры. Одна из камер является контрольной и предназначена для образца пробы материала с исходной (безопасной) концентрацией инициатора. Все камеры обеспечены диаметрально расположенными штуцерами для отбора пробы их атмосферы по теплоизолированным линиям, содержащим фильтр-ловушку, на определение газового состава газоанализатором и ее возврата в камеру при помощи микрокомпрессора. Технический результат – обеспечение разработки безопасных технологий производства, хранения и транспортировки материалов, склонных к самовозгоранию, а также их классификации как опасных грузов. 3 з.п. ф-лы, 4 ил.

Изобретение относится к сельскому хозяйству, а именно к методам определения свойств почвы. Предложен способ определения энергии активации десорбции обменных ионов почвы, заключающийся в ее определении по измеренным значениям электропроводности почвенного образца при различных температурах и фиксированной влажности. Расчет энергии активации десорбции обменных ионов производят одним из двух равноценных приемов:- по угловому коэффициенту наклона аппроксимирующей прямой зависимости электропроводности от температуры, построенной в координатах при этом угловой коэффициент прямой равен ;- по электропроводности почвенного образца, измеренной при двух значениях температуры по формуле где Еа - энергии активации десорбции обменных ионов Дж/моль;R - универсальная газовая постоянная Дж/(моль⋅K);T1 и T2 - абсолютные температуры, при которых проводится измерение, K;γ1 и γ2 - электропроводность почвенного образца при температурах;T1 и T2 соответственно, См/м;η1 и η2 - вязкость воды при температурах T1 и T2 соответственно, Па⋅с. Технический результат - повышение достоверности определения энергии активации десорбции обменных ионов почвы. 2 ил.

Изобретение относится к испытательной технике и может быть использовано для испытаний как объектов, содержащих взрывчатые и токсичные вещества, так и товаров народно-хозяйственного назначения на различные тепловые воздействия, включая воздействие открытого пламени очага пожара. Установка для испытаний объекта на температурные воздействия содержит установленную на фундаменте рабочую камеру с размещенными внутри устройством для крепления объекта испытаний и источником температурного воздействия в виде топливного коллектора, установленного под объектом испытаний, запальное устройство и вытяжное отверстие в крыше камеры с возможностью его перекрытия. Рабочая камера является сборной металлической конструкцией. Стенки камеры образованы установленными на фундаменте стойками, скрепленными поперечными балками с навешанными на них с возможностью съема металлическими модулями. Крыша камеры выполнена съемной, снаружи крыша и модули оснащены металлическим профилем. Модули приподняты над фундаментом с образованием воздушного зазора, снаружи прикрываемого отстоящими на некотором расстоянии от стенок камеры опорными модульными элементами. Каждая трубка топливного коллектора выполнена со сквозными резьбовыми отверстиями для распыления топлива, размещенными друг от друга на расстоянии, обеспечивающем условие перекрытия факелов распыляемого топлива, истекаемого из соседних отверстий, при этом устройство для крепления объекта испытаний выполнено в виде подставки из сварного металлического профиля. Технический результат - создание трансформируемой мобильной установки, допускающей ее разборку и сборку под широкий диапазон объектов испытаний при обеспечении создания равномерного температурного поля внутри камеры, увеличение ресурса и экономичности установки. 2 ил.

Изобретение относится к измерительной технике и может быть использовано для измерения избыточной длины оптического волокна в оптическом модуле оптического кабеля. Согласно способу измерения избыточной длины оптического волокна в модульной трубке оптического кабеля характеристики обратного релеевского рассеяния оптического волокна оптического кабеля модульной конструкции измеряют по крайней мере при двух значениях температуры среды, окружающей кабель, в том числе, при низкой отрицательной температуре. По данным характеристикам определяют оценки избыточной длины оптического волокна в модульной трубке оптического кабеля на регулярных участках при низкой отрицательной температуре, при этом характеристики обратного релеевского рассеяния оптического волокна оптического кабеля модульной конструкции измеряют при положительной и при низкой отрицательной температуре среды, окружающей кабель, а значение избыточной длины оптического волокна в модульной трубке оптического кабеля на регулярном участке при низкой отрицательной температуре, при которой были выполнены измерения, рассчитывают по формуле: ,где α(Т0) - коэффициент затухания оптического волокна, определенный для регулярного участка по характеристике обратного релеевского рассеяния, измеренной при положительной температуре; α(Ti) - коэффициент затухания оптического волокна, определенный для регулярного участка по характеристике обратного релеевского рассеяния, измеренной при i-й низкой отрицательной температуре; В - параметр, постоянный для заданной конструкции кабеля на длине волны, на которой были выполнены измерения. Технический результат - расширение области применения и уменьшение погрешности измерения избыточной длины оптического волокна в модульной трубке оптического кабеля. 1 ил.
Наверх