Элемент скольжения и способ его получения

Изобретение относится к элементу скольжения и способу его получения. Элемент скольжения с задающей форму подложкой и нанесенным на нее гальванически антифрикционным слоем, который образован из сплава с компонентами олово, сурьма и медь, содержание которых составляет в вес.%: сурьма 5-20%, медь 0,5-20%, остальное олово, причем содержание свинца <0,7%, и полное содержание прочих компонентов составляет <0,5%, причем в слое для подшипника скольжения кристаллы олова имеют преимущественно глобулярную форму. Способ получения элемента скольжения заключается в том, что проводят электролитическое осаждение антифрикционного слоя сплава с компонентами олова, сурьмы и меди, причем электролит в качестве смачивателя предпочтительно содержит С13С15-оксоспирт, С16С18-жирный спирт или C18-оксоспирт со степенью этоксилирования от 10 до 30. Состав и скорость осаждения регулируют добавлением вспомогательных веществ с крупными молекулами, в результате чего повышается антифрикционный слой и возникают кристаллы олова, имеющие глобулярную форму. Технический результат - создание слоя для подшипника скольжения с улучшенными рабочими свойствами. 2 н. и 8 з.п. ф-лы, 1 пр.

 

Изобретение относится к элементу скольжения c задающей форму подложкой и антифрикционным слоем, нанесенным на нее гальванически, который образован из сплава с компонентами олова, сурьмы и меди, доля которых составляет в вес.%:

сурьма 5-20%,

медь 0,5-20%,

остальное олово,

причем содержание свинца <0,7%, а полное содержание прочих компонентов составляет <0,5%.

Изобретение относится также к способу получения антифрикционного слоя из сплава с компонентами олово, сурьма и медь путем электролитического осаждения на задающую форму подложку.

Слой для подшипника скольжения упомянутого в начале вида известен, например, из патента DE 8206353 U1. При этом слой для подшипника скольжения наносят гальваническим способом на подложку, которая находится на стальной опорной втулке. При этом слой для подшипника скольжения имеет толщину примерно 20 мкм. Кроме того, стремятся к тому, чтобы содержание меди в слое для подшипника скольжения было меньше 0,5 вес.%, так как большее содержание меди согласно этой противопоставленной ссылке имеет отрицательное влияние на усталостные свойства слоя для подшипника скольжения.

На практике известные слои для подшипника скольжения получают гальванически с применением смачивателя, который реализуется под названием Igepal CO 880, производство Rhodia Nove-care, и является нонилфенолэтоксилатом с 30 этокси-группами (EO). Формирование электролитического слоя происходит с образованием столбчатых кристаллов и не позволяет получить подходящих слоев, которые были бы существенно толще 20 мкм. Таким образом, естественно, что срок службы слоев для подшипника скольжения очень ограничен из-за неизбежного истирания.

В основе настоящего изобретения стоит задача разработки слоя для подшипника скольжения с улучшенными рабочими свойствами.

Согласно изобретению эта задача решается для подшипника скольжения упомянутого выше типа тем, что в слое для подшипника скольжения кристаллы олова образуются преимущественно в форме глобул.

Кроме того, для решения указанной задачи способ по изобретению отличается применением электролита на основе фтороборной кислоты и фторборатов металлов в водном растворе, который содержит следующие компоненты:

Sn2+ 15-80 г/л

Sb3+ 0,5-20 г/л·j

Cu2+ 0,05-10 г/л

HBF4 20-200 г/л

смачиватель 0,05-5 г/л,

а также возможные вспомогательные вещества, которые не входят в получаемый слой элемента скольжения, причем благодаря по меньшей мере одному вспомогательному веществу из-за размера его молекул скорость миграции ионов элементов, образующих антифрикционный слой, повышается настолько, что образуются преимущественно кристаллы олова в форме глобул.

Оказалось, что благодаря получению антифрикционного слоя таким образом, что преобладающая часть (>50%) кристаллов олова имеет глобулярную структуру (а не игольчатую или столбчатую структуру, как было принято до сих пор), достигается равномерная структура антифрикционного слоя. Глобулярную структуру кристаллов олова можно получить, повышая скорость осаждения добавлением вспомогательных веществ с большими молекулами, в частности желатина и/или резорцина, благодаря чему состав антифрикционного слоя и образующуюся структуру можно регулировать по желанию. При этом целесообразно применение смачивателей, которые образованы из C13C15-оксоспирта, C16C18-жирного спирта или C13-оксоспирта со степенью этоксилирования от 10 до 30. Предпочтительный смачиватель является оксоспиртом со степенью этоксилирования 20.

Система согласно изобретению имеет исключительно однородную структуру, в которой однородные, а также в основном глобулярныe, богатые сурьмой выделения находятся равномерно распределенными. Этим достигается существенно более стабильный антифрикционный слой, который можно использовать также при толщине заметно больше 20 мкм, в частности больше 50 мкм, стабильно, однородно и без отслоений. Так, можно сразу получать антифрикционные слои толщиной, например, 500 мкм.

Под "глобулярной" в связи со структурами и кристаллизацией следует понимать зерна, размер которых таков, что отношение наибольшего измерения к наименьшему измерению составляет <3, предпочтительно <2.

Подходящие смачиватели продаются, в частности, под маркой Lutensol фирмой BASF.

В частности, подходят следующие смачиватели (EO=степень этоксилирования):

Lutensol AO 11 C13C15-оксоспирт с 11 EO
Lutensol AO 30 C13C15-оксоспирт с 30 EO
Lutensol AT 13 C16C18-жирный спирт с 13 EO
Lutensol AT 25 C16C18-жирный спирт с 25 EO
Lutensol TO 12 C13-оксоспирт с 12 EO
Lutensol TO 20 C13-оксоспирт с 20 EO
Lutensol ON 110 C13-оксоспирт с 20 EO

Особенно подходящими для получения слоя по изобретению для подшипника скольжения и для предотвращения образования дендритов оказались смачиватели Lutensol ON 110 и TO 20. Особенно предпочтителен Lutensol ON 110, то есть C13-оксоспирт с 20 EO.

В одной предпочтительной форме реализации элемента скольжения по изобретению доля меди в антифрикционном слое составляет от 3 до 6%. В отличие от указаний для полезной модели 82 06 353 IM повышенное содержание меди ведет к повышению допустимой нагрузки и усталостной прочности антифрикционного слоя. Поэтому согласно изобретению можно предусмотреть такую долю меди, которая не только превышает выгодное желательное содержание меди <0,5 вес.%, но также вообще выше допустимого в указанной работе максимального содержания меди максимум 2%.

Предпочтительно, чтобы доля сурьмы в антифрикционном слое составляла от 8 до 17 вес.%.

Предпочтительно, чтобы доля меди составляла от 2 до 7%.

Доля имеющих глобулярную форму кристаллов олова в антифрикционном слое предпочтительно составляет выше 70%, еще более предпочтительно выше 80%.

Элемент скольжения по изобретению может быть обычной цилиндрической втулкой подшипника скольжения, частью такой втулки подшипника скольжения или же по существу плоским элементом. Задающая форму подложка состоит из металла и, как правило, может состоять из стали с нанесенным баббитом, который имеет предохранительные смазочные свойства. На этот опорный элемент наносится антифрикционный слой по изобретению. Так как антифрикционный слой по изобретению можно наносить на большую толщину с высокой стабильностью, можно также отказаться от слоя баббита и сразу наносить антифрикционный слой непосредственно на формообразующую подложку из металла.

Для пояснения изобретения описываются следующие результаты испытаний для примеров осуществления.

Был получен основной электролит (без смачивателя) следующего состава:

Sn2+ 33-35 г/л

Sb3+ 2,4-3,0 г/л

Cu2+ 0,23-0,26 г/л

HBF4 35-45 г/л

резорцин 3-4 г/л

желатин 0,25 г/л

Резорцин и желатин являются вспомогательными веществами, которые влияют на состав и скорость осаждения образующегося слоя. Резорцин влияет в основном на состав, тогда как большие молекулы желатина влияют на кристаллическую структуру, шероховатость и состав слоя. Кроме того, концентрацию желатина целесообразно устанавливать между 0,1 и 0,5 г/л.

Электролитическое осаждение проводилось при постоянном токе 2 А/дм2 с применением оловянных электродов при температуре ванны 22-24°C.

Стальную подложку предварительно покрывали слоем никеля (электролитически).

Осаждение SnSbCu производилось как на вращающиеся стержневые электроды, так и жестяные листы. Осаждение на вращающиеся стержневые электроды предотвращает неконтролируемый рост дендритов, который повредил бы результатам испытаний.

Все испытанные смачиватели, которые были упомянуты выше, в отличие от контрольного стандартного смачивателя, который обычно применялся ранее, приводят к другой структуре при осаждении. В частности, значительно сокращается рост дендритов.

С учетом этого особенно выгодно применение смачивателей Lutensol ON 110 и Lutensol TO 20.

Таким образом, с указанными смачивателями, в частности с предпочтительно применяемыми смачивателями, может быть получен антифрикционный слой, который в том, что касается его кристаллической структуры, отличается от прежних антифрикционных слоев и дает существенные преимущества в обращении с ним. В частности, можно получить слой почти с любой толщиной, так что благодаря этому достигается не имевшаяся ранее свобода в отношении толщины слоя и образования элементов скольжения.

1. Элемент скольжения с задающей форму подложкой и нанесенным на нее гальванически антифрикционным слоем, который образован из сплава с компонентами олово, сурьма и медь, содержание которых составляет, вес.%:

сурьма 5-20
медь 0,5-20
олово остальное,

причем содержание свинца <0,7%, и полное содержание прочих компонентов составляет <0,5%, отличающийся тем, что в слое для подшипника скольжения кристаллы олова имеют преимущественно глобулярную форму.

2. Элемент скольжения по п.1, отличающийся тем, что доля меди составляет от 0,5 до 7%.

3. Элемент скольжения по п.2, отличающийся тем, что доля меди в слое для подшипника скольжения составляет от 3% до 6%.

4. Элемент скольжения по п.1 или 2, отличающийся тем, что доля сурьмы в слое для подшипника скольжения составляет от 8 до 17%.

5. Элемент скольжения по п.1, отличающийся тем, что слой для подшипника скольжения нанесен на толщину >20 мкм.

6. Способ получения элемента скольжения путем электролитического осаждения антифрикционного слоя сплава с компонентами олова, сурьмы и меди на задающую форму подложку, отличающийся тем, что используют электролит на основе фторборной кислоты и фторборатов металла в водном растворе, который содержит следующие компоненты, г/л:

Sn2+ 15-80
Sb3+ 0,5-20
Cu2+ 0,05-10
HBF4 20-200
смачиватель 0,05-5,

а также возможные вспомогательное вещества, которые не входят в получаемый слой для подшипника скольжения, причем благодаря вспомогательному веществу из-за размеров его молекул скорость миграции ионов элементов, образующих антифрикционный слой, усиливается настолько, что возникают кристаллы олова, имеющие преимущественно глобулярную форму.

7. Способ по п.6, отличающийся тем, что смачиватель является C13C15-оксоспиртом, С16С18-жирным спиртом или C18-оксоспиртом со степенью этоксилирования от 10 до 30.

8. Способ по п.7, отличающийся тем, что в качестве смачивателя используется оксоспирт со степенью этоксилирования 20.

9. Способ по п.6 или 8, отличающийся тем, что используется смачиватель в концентрации 0,1-3,0 г/л.

10. Способ по п.6, отличающийся тем, что устанавливается скорость электролитического осаждения 0,3-1,5 мкм/мин.



 

Похожие патенты:

Изобретение относится к области машиностроительного производства и может быть использовано для изготовления узлов и механизмов, эксплуатация которых осуществляет в условиях, максимально близких к экстремальным.
Изобретение относится к машиностроению, в частности к уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций.

Изобретение относится к подшипнику скольжения и к способу изготовления такого подшипника. .

Изобретение относится к самосмазывающимся направляющим деталям для шарниров и подшипников. .

Изобретение относится к машиностроению, в частности к способу изготовления колодки упорного подшипника скольжения (подпятника). .

Изобретение относится к подшипнику скольжения для лопатки (100) спрямляющего аппарата с регулируемым углом установки с пятой вала (114), вращающимся в просверленном отверстии корпуса (103) газотурбинного двигателя.
Изобретение относится к порошковой металлургии, в частности к способам изготовления подшипников скольжения для применения в различных отраслях машиностроения. .

Изобретение относится к машиностроению, в частности к способу изготовления колодки упорного подшипника скольжения (подпятника). .

Изобретение относится к области машиностроения. .
Изобретение относится к машиностроению, в частности к способу формирования прочного износостойкого пленочного покрытия в узлах трения топливных, гидравлических, прецизионных систем, зубчатых и цепных передач, систем с циркуляционной смазкой, применяемых в автомобильной и в других отраслях промышленности.
Изобретение относится к литейному производству и может быть применено для получения алюминиево-свинцовых подшипников скольжения. .
Изобретение относится к получению на поверхности металлов износостойких покрытий методом микродугового оксидирования и может быть использовано в машиностроении, химической и нефтеперерабатывающей промышленности.

Изобретение относится к порошковой металлургии, в частности к получению листовых антифрикционных материалов на металлической подложке. .
Изобретение относится к порошковой металлургии, в частности к антифрикционным материалам для высоконагруженных узлов трения. .

Изобретение относится к подшипнику скольжения для лопатки (100) спрямляющего аппарата с регулируемым углом установки с пятой вала (114), вращающимся в просверленном отверстии корпуса (103) газотурбинного двигателя.
Изобретение относится к порошковой металлургии и может быть использовано для изготовления износостойких устройств и элементов машиностроительного назначения, в частности подшипников скольжения, работающих в условиях граничного и сухого трения.

Изобретение относится к порошковой металлургии, в частности к антифрикционным материалам на основе меди для высоконагруженных узлов трения. .
Изобретение относится к машиностроению и может быть использовано в узлах трения, работающих в сложных условиях, например при создании погружных центробежных насосов для добычи нефти, предназначенных для работы в скважинах с высоким содержанием механических примесей в пластовой жидкости.

Изобретение относится к многослойным композиционным материалам для подшипников скольжения или втулок, в которых стремятся использовать не содержащие свинца скользящие слои.
Изобретение относится к области металлургии, в частности к составам антифрикционных сплавов на основе олова, используемых для заливки подшипников. .
Наверх