Четырехпульсный преобразователь

Предлагаемое изобретение относится к преобразовательной технике и может быть использовано при создании регулируемых электроприводов постоянного тока, не предъявляющих повышенных требований к их быстродействию, а также для питания различных электротехнических установок, не предъявляющих повышенных требований к пульсации выпрямленного напряжения. Четырехпульсный преобразователь может работать в двух режимах: в режиме выпрямителя и в режиме инвертора. Работа в режиме неуправляемого выпрямителя при использовании в качестве вентилей полупроводниковых диодов происходит следующим образом: всегда работают два вентиля - один из двух вентилей катодной группы, потенциал на аноде которого наибольший, и один из двух вентилей анодной группы, потенциал на катоде которого наименьший. Поэтому среднее значение тока, протекающего через вентиль, равно одной второй части среднего значения тока нагрузки. Каждый вентиль за период включается один раз. Работают одновременно два вентиля - один из анодной группы, другой - из катодной группы. Среднее значение прямого тока вентиля, а также потери напряжения и мощности в вентилях аналогичны прототипу. Технический результат - уменьшение пульсаций выпрямленного напряжения и равномерное распределение однофазной нагрузки по фазам питающей сети. 2 ил., 1 табл.

 

Предлагаемое изобретение относится к преобразовательной технике и может быть использовано при создании источников постоянного тока сравнительно небольшой стоимости для питания различных электротехнических устройств, не предъявляющих повышенных требований к величине пульсаций выпрямленного напряжения, быстродействию при регулировании напряжения, а также к гармоническому составу кривой тока на стороне переменного тока.

Наиболее близким решением из уровня техники к предлагаемому является преобразователь, содержащий однофазный трансформатор с первичной и вторичной обмоткой и четыре вентиля, вкюченных по схеме однофазного моста. ("Основы промышленной электроники" под ред. В.Г.Герасимова. М.: «Высшая школа», 1978, рис.8.3, а, стр.179).

Недостатком известного преобразователя является тот факт, что при четырех вентилях он дает на выходе двухфазную пульсацию с амплитудой равной половине амплитуды переменного напряжения на входе выпрямителя и частотой пульсации вдвое большей частоты входного напряжения.

Технической задачей заявленного решения является обеспечение при том же числе вентилей уменьшения вдвое величины амплитуды пульсации выпрямленного напряжения и увеличения вдвое частоты пульсации выпрямленного напряжения, что влечет за собой уменьшение напряжения на входе выпрямителя при заданной величине выпрямленного напряжения и, следовательно, уменьшение мощности согласующего трансформатора, а также мощности сглаживающего фильтра, его веса, стоимости и потерь энергии в нем при работе преобразователя, что в конечном итоге позволяет повысить КПД преобразователя, а также снизить его габариты, вес и стоимость. Кроме того, предлагаемый преобразователь более равномерно распределяет однофазную нагрузку по всем трем фазам и обладает более высоким быстродействием в управляемых выпрямителях.

Поставленная задача решается посредством того, что в четырехпульсном преобразователе, содержащем трехфазный трансформатор с двойным комплектом вторичных обмоток и четыре вентиля, согласно изобретению вторичные обмотки всех фаз трансформатора соединены в один контур в виде « шестиугольника» таким образом, что напряжения между вершинами «шестиугольника» образуют шестифазную систему напряжений, а вентили соединены в две группы по два вентиля в каждой - анодную и катодную, при этом в анодной группе вентилей аноды соединены в один узел, представляющий собой один полюс на стороне постоянного тока, а в катодной группе вентилей катоды соединены в один узел, представляющий другой полюс на стороне постоянного тока, причем вентили анодной группы своими катодами соединены с противоположными вершинами «шестиугольника» вторичных обмоток, каждый со своей вершиной, а вентили катодной группы своими анодами подсоединены к средним точкам катушек фаз вторичных обмоток трансформатора, каждый к своей катушке, не связанной с узлами «шестиугольника», к которым подсоединены вентили катодной группы.

Предлагаемое изобретение поясняется графическими материалами, где

- на фиг.1 представлена схема четырехпульсного преобразователя напряжения;

- на фиг.2 - векторная диаграмма потенциалов на вентилях.

Четырехпульсный преобразователь Сучкова состоит из трехфазного трансформатора, имеющего три катушки 1, 2, 3 первичной обмотки, соединенных по схеме «звезда» и подключаемых к фазам сети 1, 2, 3, и соединенных между собой шести катушек 4, 5, 6, 7, 8, 9 вторичных обмоток и соединенных с вентилями преобразователя. Одноименные зажимы (начала) всех катушек помечены знаком «звездочка» (*). При этом начало катушки 4 вторичной обмотки соединено с началом катушки 9 вторичной обмотки, конец катушки 9 вторичной обмотки - с концом катушки 6 вторичной обмотки, начало катушки 6 вторичной обмотки - с началом катушки 5 вторичной обмотки, конец катушки 5 вторичной обмотки - с концом катушки 8 вторичной обмотки, начало катушки 8 вторичной обмотки - с началом катушки 7 вторичной обмотки, конец катушки 7 вторичной обмотки - с концом катушки 4 вторичной обмотки, замыкая контур катушек вторичных обмоток. Каждая катушка вторичных обмоток трансформатора является стороной «шестиугольника». Вентили 10 и 11 катодной группы своими анодами подсоединены к отпайкам от половины витков катушек 4 и 5 вторичных обмоток трансформатора. Вентили 12 и 13 анодной группы преобразователя своими катодами подсоединены один к узлу, связывающему концы катушек 6 и 9, и другой - к узлу, связывающему начала катушек 7 и 8 вторичных обмоток трансформатора.

На векторной диаграмме представлены векторы потенциалов на анодах вентилей катодной группы и на катодах вентилей анодной группы относительно центра «шестиугольника» - точки О, потенциал которой принят равным нулю и потенциалы узлов «шестиугольника»: узла 12, связывающего концы катушек 6 и 9; узла 13, связывающего начала катушек 7 и 8; узла 14, связывающего начала катушек 4 и 9; узла 15, связывающего концы катушек 5 и 8; узла 16, связывающего концы катушек 4 и 7; узла 17, связывающего начала катушек 5 и 6.

Четырехпульсный преобразователь работает следующим образом.

Четырехпульсный преобразователь может работать в двух режимах: в режиме выпрямителя и в режиме инвертора. Работа в режиме неуправляемого выпрямителя при использовании в качестве вентилей полупроводниковых диодов происходит следующим образом: всегда работают два вентиля - один из двух вентилей катодной группы, потенциал на аноде которого наибольший, и один из двух вентилей анодной группы, потенциал на катоде которого наименьший. Поэтому среднее значение тока, протекающего через вентиль - Iв, равно одной второй части среднего значения тока нагрузки - Iо:Iв=1/2Io. Каждый вентиль за период включается один раз. Работают одновременно два вентиля - один вентиль из анодной группы, другой из катодной группы, также, как это имеет место у прототипа. Таким образом, среднее значение прямого тока вентиля, а также потери напряжения и мощности при работе преобразователя равны аналогичным величинам у прототипа.

Следует также учесть, что вентили для преобразователя выбираются по прямому току. Поэтому их габариты, вес и стоимость, определяясь тем же значением тока, будут теми же, что и у прототипа.

Во времени потенциалы на вентилях изменяются по гармоническому закону, определяемому изменением проекции вектора потенциала на ось ординат при вращении векторов против часовой стрелки с угловой скоростью ω=2πf1, где f1 - частота питающего преобразователь напряжения. Векторная диаграмма потенциалов узлов преобразователя представлена для момента времени, когда вентиль 11 катодной группы меняет работавший до этого момента времени вентиль 10 той же катодной группы, так как потенциал на аноде вентиля 11 стал больше. Следовательно, напряжение на выходе выпрямителя, определявшееся проекцией отрезка 13-10 (см. фиг.2) на ось ординат, меняется на равное ему напряжение, определяемое проекцией отрезка 13-11, и будет определяться этой проекцией до того момента, когда вентиль 13 анодной группы будет заменен другим вентилем 12 той же анодной группы - в тот момент времени, когда его потенциал на катоде станет больше потенциала на катоде вентиля 13 анодной группы.

В четырехпульсном преобразователе каждый период питающего напряжения разделяется на четыре интервала времени. В каждом последующем интервале времени закон изменения напряжения на выходе повторяет закон изменения напряжения предыдущего интервала. Введем следующие обозначения: Ni - порядковый номер интервала; Ti - момент времени начала i-ого интервала в секундах, отсчитанное от момента начала первого; Ва - работающий вентиль анодной группы; Вк - работающий вентиль катодной группы. Циклограмма работы вентилей катодной и анодной групп приведена в таблице 1.

Выразим величину среднего выпрямленного напряжения на выходе преобразователя через амплитуду фазного напряжения U2m на катушке вторичной обмотки фазы трехфазного трансформатора. В пределах одного интервала времени четырехпульсного выпрямителя его напряжение на выходе изменяется по гармоническому закону.

Таблица 1
Mi 1 2 3 4
Ti 0 5 10 15
Ва 11 11 10 10
Bk 13 12 12 13

Обозначим амплитуду выходного напряжения Uom. Ее можно определить длиной отрезка (10-13) на векторной диаграмме как гипотенузу прямоугольного треугольника (10-13-0) при катетах: 0,5U2m/tg30° и U2m. Тогда Uom=1,323U2m

В пределах интервала времени - Т/8<t<Т/8, где Т - период изменения трехфазного напряжения питающей сети, напряжение на выходе преобразователя изменяется по закону

Uo(t)=UomCosωt

Поэтому величина среднего выпрямленного напряжения на выходе преобразователя Uo определяется средним значением определенного интеграла от функции Uo(t) в пределах от -Т/8 до +Т/8 за одну четвертую часть периода:

Uo=1,197U2m

У прототипа величина среднего значения выпрямленного напряжения равна Uo=0,637U2m, что меньше в 1,88 раза. Это позволяет уменьшить число витков катушки вторичной обмотки трансформатора в то же число раз.

В момент времени, когда происходит изменение структуры схемы из-за изменившихся потенциалов на вентилях, напряжение на выходе выпрямителя минимально. Определим его величину на примере перехода от первого ко второму временному интервалу, для которого построена векторная диаграмма. Величина выходного напряжения будет минимальна и будет определяться разностью проекций векторов потенциалов вентилей 10 и 13 на ось ординат, т.е. длиной отрезка (0-13):

Uomin=U2m

Выпрямленное напряжение пульсирует с четырехкратной частотой по сравнению с частотой питающего напряжения в промежутке напряжений U2m<Uo(t)<1,323U2m при среднем значении Uo=1,197U2m с амплитудой 0,0985U2m, что составляет ниже 8,3% от среднего значения выпрямленного напряжения и меньше амплитуды у прототипа более чем в 5 раз.

Таким образом, предлагаемое техническое решение позволяет увеличить частоту пульсации выпрямленного напряжения в два раза и уменьшить амплитуду этих пульсаций при работе преобразователя в пять раз, что в конечном итоге позволяет уменьшить мощность фильтра на стороне выпрямленного напряжения, повысить КПД преобразователя, а также снизить его габариты, вес и стоимость.

Анализ заявленного технического решения на соответствие требованиям условиям патентоспособности показал, что указанные в независимом пункте формулы признаки являются существенными и взаимосвязаны между собой с образованием устойчивой совокупности, неизвестной на дату приоритета из уровня техники, необходимых признаков, достаточной для получения требуемого синергетического (сверхсуммарного) технического результата.

Свойства, регламентированные в заявленном соединении отдельными признаками, общеизвестны из уровня техники и не требуют дополнительных пояснений.

Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного технического решения следующей совокупности условий:

- объект, воплощающий заявленное техническое решение, при его осуществлении предназначен для использования при создании регулируемых электроприводов постоянного тока;

- для заявленного объекта в том виде, как он охарактеризован в независимом пункте формулы изобретения, подтверждена возможность его осуществления с помощью вышеописанных в материалах заявки известных из уровня техники на дату приоритета средств и методов;

- объект, воплощающий заявленное техническое решение, при его осуществлении способен обеспечить достижение усматриваемого заявителем технического результата.

Следовательно, заявленный объект соответствуют требованиям и условиям патентоспособности «новизна», «изобретательский уровень» и «промышленная применимость» по действующему законодательству.

Четырехпульсный преобразователь, содержащий трехфазный трансформатор с двойным комплектом вторичных обмоток и вентили, отличающийся тем, что вторичные обмотки всех фаз трансформатора соединены в один контур в виде «шестиугольника» таким образом, что напряжения между вершинами «шестиугольника» образуют шестифазную систему напряжений, а вентили соединены в две группы - анодную и катодную, при этом в анодной группе вентилей аноды соединены в один узел, представляющий собой один полюс на стороне постоянного тока, а в катодной группе вентилей катоды соединены в один узел, представляющий другой полюс на стороне постоянного тока, причем вентили анодной группы своими катодами соединены с противоположными вершинами «шестиугольника» вторичных обмоток, каждый со своей вершиной, а вентили катодной группы своими анодами подсоединены к средним точкам катушек фаз вторичных обмоток трансформатора, каждый к своей катушке, не связанной с узлами «шестиугольника», к которым подсоединены вентили катодной группы.



 

Похожие патенты:

Изобретение относится к преобразовательной технике и может быть использовано при создании регулируемых электроприводов постоянного тока, не предъявляющих повышенных требований к быстродействию, а также для питания различных электротехнических установок, не предъявляющих повышенных требований к пульсации выпрямленного напряжения.

Изобретение относится к преобразовательной технике и может быть использовано при создании регулируемых электроприводов постоянного тока для станков для повышения их быстродействия, а также на преобразовательных подстанциях для питания электрифицированных железных дорог в электрометаллургической и химической отраслях промышленности для уменьшения величины пульсаций выпрямленного напряжения и уменьшения содержания высших гармонических составляющих в кривой переменного тока.

Изобретение относится к устройству для выработки постоянного напряжения из переменного напряжения с параллельно включенными диодными мостами, преимущественно, для энергопитания железных дорог.

Изобретение относится к области преобразовательной техники и может найти применение для питания потребителей постоянного тока с повышенными требованиями к качеству выпрямленного напряжения.

Изобретение относится к области преобразовательной техники и может найти применение для питания потребителей постоянного тока, преимущественно с низковольтным питанием, а также в специализированных силовых преобразователях, например, для зарядных и сварочных агрегатов.

Изобретение относится к области преобразовательной техники и может найти применение для питания потребителей постоянного тока, в частности, в системах электроснабжения электрического транспорта.

Изобретение относится к области преобразовательной техники и может найти применение для питания потребителей постоянного тока, преимущественно с низковольтным питанием.

Изобретение относится к области преобразовательной техники и может найти применение для питания потребителей постоянного тока, в частности, в системах электроснабжения электрифицированных железных дорог.

Изобретение относится к области электротехники и может быть использовано в качестве источника постоянного тока с улучшенным качеством выпрямленного напряжения при однофазном напряжении сети.

Изобретение относится к электротехнике и силовой преобразовательной технике и может быть использовано в качестве преобразователя переменного напряжения в постоянное для питания потребителей с повышенными требованиями к качеству выпрямленного напряжения.

Изобретение относится к электротехнике, конкретно к многопульсным выпрямительным устройствам (ВУ) и автотрансформаторам различного назначения

Двенадцатипульсный повышающий автотрансформаторный преобразователь напряжения (с коэффициентом трансформации напряжений Кu=0,5 и нулевой точкой преобразователя) может быть использован при создании преобразователей для регулируемых электроприводов постоянного и переменного тока. Преобразователь напряжения работает следующим образом. При подключении трехфазного автотрансформатора к трехфазной сети в трех стержнях магнитной цепи автотрансформатора возникают три магнитных потока, сдвинутых по фазе друг относительно друга на третью часть периода. Выполнение вторичной обмотки для каждой фазы в виде двух катушек на стержне каждой фазы позволяет получить два вторичных напряжения с противоположной полярностью. Таким образом, при трех напряжениях сети, сдвинутых по фазе на 120°, получаются шесть вторичных напряжений, сдвинутых по фазе друг относительно друга на 60°. При соединении шести катушек вторичных обмоток так, как описано выше, получается шестифазный «шестиугольник» ABCDEF с симметричной шестифазной системой напряжений на катушках вторичной обмотки. Технический результат - сокращение расхода активных материалов при замене трехфазного группового трансформатора трехфазным трехстержневым автотрансформатором. 2 ил.

Двенадцатипульсный повышающий автотрансформаторный преобразователь напряжения (с коэффициентом трансформации напряжений Ku=1 и нулевой точкой преобразователя) относится к преобразовательной технике и может быть использован при создании преобразователей для регулируемых электроприводов постоянного и переменного тока. Преобразователь напряжения работает следующим образом. При подключении трехфазного автотрансформатора к трехфазной сети в стержнях магнитной цепи автотрансформатора возникают три магнитных потока, сдвинутых по фазе друг относительно друга на третью часть периода. Выполнение вторичной обмотки для каждой фазы в виде двух катушек на стержне каждой фазы позволяет получить два вторичных напряжения с противоположной полярностью. Таким образом, при трех напряжениях сети, сдвинутых по фазе на 120°, получаются шесть вторичных напряжений, сдвинутых по фазе друг относительно друга на 60°. При соединении шести катушек вторичных обмоток так, как описано выше, получается шестифазный «шестиугольник» ABCDEF с симметричной шестифазной системой напряжений на катушках. Технический результат - сокращение расхода активных материалов при замене трехфазного группового трансформатора трехстержневым автотрансформатором. 2 ил.

Предлагаемое изобретение относится к преобразовательной технике и может быть использовано при создании преобразователей для регулируемых электроприводов постоянного и переменного тока. Двенадцатипульсный трансформаторный преобразователь напряжения работает следующим образом. При подключении трехфазного трансформатора к трехфазной сети в стержнях магнитной цепи трансформатора возникают три магнитных потока, сдвинутых по фазе друг относительно друга на третью часть периода. Выполнение вторичной обмотки для каждой фазы в виде двух катушек на стержне каждой фазы позволяет получить два вторичных напряжения с противоположной полярностью. Таким образом, при трех напряжениях сети, сдвинутых по фазе на 120°, получаются шесть вторичных напряжений, сдвинутых по фазе друг относительно друга на 60°. При соединении шести катушек вторичных обмоток так, как описано выше, получается шестифазный «шестиугольник» ABCDEF с симметричной шестифазной системой напряжений на катушках вторичной обмотки. Технический результат - сокращение расхода активных материалов при замене трехфазного группового трансформатора трехстержневым трансформатором. 2 ил.

Изобретение относится к электротехнике и реализует простой и универсальный способ контроля и защиты инвертора от перегрузок как по активной, так и по полной мощности, что обеспечивает безопасность его эксплуатации без ограничения мощностных возможностей инвертора. Технический результат заключается в защите устройства от перегрузки, его малых габаритах и весе, его высокой надежности и удобстве эксплуатации. Для этого заявленное устройство содержит источник постоянного напряжения, инвертор, датчики выходного тока и напряжения, нагрузку, блок контактора с контактами между источником постоянного напряжения и инвертором, дополнительно снабжено двумя аналоговыми перемножителями, двумя выпрямителями, фильтром нижних частот, двумя компараторами, элементом ИЛИ, таймером и элементом запрета. 1 ил.

Изобретение относится к преобразователю-выпрямителю, выполненному по мостовой схеме Греца, в котором, по меньшей мере, одно плечо выпрямителя, расположенное между отдельным AC-выводом и отдельным DC-выводом, включает в себя ряд однонаправленных электронных компонентов (5), соединенных параллельно, и присоединяемых с помощью набора токопроводящих компонентов с одной стороны к DC-выводу и с другой стороны - к AC-выводу. Изобретение характеризуется тем, что набор компонентов, по меньшей мере, для одного плеча выпрямителя включает в себя множество отдельных сборных шин (9A, 9B) для компонентов, каждая из которых имеет, по меньшей мере, один конец, соединенный с DC-выводом, при этом однонаправленные компоненты (5) разделены между сборными шинами (9A, 9B) для компонентов с образованием стольких наборов компонентов (71, 72), соединенных параллельно, сколько имеется сборных шин (9A, 9B) для компонентов. Технический результат - возможность соединения в параллель большего числа компонентов без превышения максимально допустимого значения дисбаланса.11 з.п. ф-лы, 12 ил.

Изобретение относится к электроэнергетике. Технический результат - снижение помех и потерь энергии, повышение надежности. К сети 1 подключено 2mn преобразовательных блоков 2. В каждой ветви преобразовательные мосты связаны с сетью через трансформатор с электрическим сдвигом входных напряжений на 60/n (n>1) электроградусов, где n - число мостов полуцепи (n>1). Полуцепи разбиты по парам, в каждой паре содержатся ветви разных полюсов и трансформаторы одной полуцепи обеспечивают сдвиг напряжений на угол 30/n электроградусов относительно напряжений трансформаторов второй полуцепи, средняя точка полуцепей присоединена через выносную линию к контуру заземления. Трансформаторы всякой последующей ветви обеспечивают сдвиг напряжений на угол 30/mn электроградусов относительно напряжений трансформаторов предыдущей ветви. Блоки содержат выключатели 3, трансформаторы 4, преобразовательные мосты 5. 1 з.п. ф-лы, 2 ил.

Изобретение относится к электроэнергетике. Технический результат - снижение помех и потерь энергии, повышение надежности. К сети 1 подключено m преобразовательных блоков 2. Блоки содержит выключатели 3, трансформаторы 4, преобразовательные мосты 5. Число мостов в каждом блоке n. Блоки 2 через реакторы 6 соединены с проводом 7 линии. Второй вывод блоков 2 через провода 8 заземляющей линии соединен с заземлением 9. Подстанция преобразует один род тока (постоянный, переменный) в другой и связывает таким образом сеть 1 переменного тока и линию 7 постоянного тока. Новым является то, что трансформатор одной ветви имеют сдвиг по отношению к трансформатору другого блока на угол 60/mn электроградусов. Снижаются высшие гармоники на стороне постоянного и переменного тока. 1 з.п. ф-лы, 3 ил.

Изобретение относится к электроэнергетике. Технический результат - снижение помех и потерь энергии, повышение надежности. Преобразуется один род тока (постоянный, переменный) в другой, и связываются таким образом сеть 1 переменного тока и линия 14, 15 постоянного тока. Трехфазные тиристорные мосты 10, 11 работают в выпрямительном или инверторном режимах. Трансформатор одного блока имеет сдвиг по отношению к трансформатору другого блока на угол 30/n=15 электроградусов. Поэтому кратные 6n гармоники выпрямленного напряжения одного блока противофазны гармоникам другого блока и взаимокомпенсируются или значительно ослабляются, ибо заземление 16 и выносная линия 17 обладают собственной индуктивностью. Одновременно с этим снижаются гармоники тока. 2 ил.
Наверх