Солнечная энергоустановка

Изобретение относится к гелиоэнергетике, в частности к конструкциям солнечных энергетических установок с фотоэлектрическим датчиком слежения за солнцем и системой азимутального поворота солнечного модуля, а также к системам автоматического слежения за источником света и предназначено для автоматической ориентации плоскости солнечного модуля за источником света (Солнцем). Система слежения включает компактный фотоэлектрический датчик положения Солнца, состоящий из каркаса в форме прямой трехгранной призмы, на двух боковых гранях которой размещены фотоэлементы слежения за солнцем, а на третьей грани установлен командный фотоэлемент разворота модулей с запада на восток. В течение светового дня фотоэлементы слежения на гранях датчика выдают командные сигналы для блока управления приводом азимутального поворота солнечного модуля, который при этом разворачивается в направлении солнца с помощью вала. Применение системы слежения позволит увеличить эффективность применения солнечного модуля. 3 з.п. ф-лы, 2 ил.

 

Изобретение относится к гелиоэнергетике, в частности к конструкциям солнечных энергетических установок с фотоэлектрическим датчиком слежения за Солнцем и системой азимутального поворота солнечных коллекторов или фотоэлектрических модулей.

Общеизвестно, что ориентация солнечных модулей энергоустановок в направлении Солнца обеспечивает увеличение выхода энергии в течение светового дня по сравнению со стационарными солнечными энергоустановками.

Известна солнечная энергоустановка, в которой датчиком слежения за Солнцем являются два телескопических термопривода, разделенных экраном (RU 2125686). Суточный поворот солнечной панели осуществляется посредством выдвижения штоков термоприводов, нагретых до разных температур.

Основным недостатком данного устройства является тепловая инерционность нагрева термоприводов как при восходе Солнца, так и в условиях переменной облачности. Кроме того, на точность ориентации солнечной панели будет оказывать влияние температура окружающего воздуха, скорость и направление ветра.

Известна также солнечная энергоустановка (прототип), включающая фотоэлектрическую систему слежения за Солнцем с блоком управления и приводом азимутального поворота солнечных фотоэлектрических модулей (RU 2280918). В данном устройстве командным датчиком положения является сам фотоэлектрический модуль, разделенный на две части продольной перегородкой с отражающими боковыми поверхностями. На обратной стороне фотоэлектрического модуля установлен командный фотоэлемент возврата модуля в направлении восхода Солнца.

Система слежения за Солнцем, реализованная в прототипе, не может быть использована в управлении положением солнечных модулей типа тепловых коллекторов. Кроме того, предпочтительнее иметь систему слежения с датчиком положения в виде малогабаритного отдельного блока, который может быть освоен в производстве и пригоден для использования с любым типом солнечных модулей (тепловых коллекторов или фотоэлектрических батарей). На точность ориентации солнечных модулей у прототипа также может оказывать разная степень нагрева половин фотоэлектрического модуля, если холодный ветер направлен перпендикулярно плоскости продольной перегородки солнечного модуля.

Задача: создание солнечной энергоустановки, в состав которой входит отдельным элементом компактный и простой в изготовлении датчик слежения за Солнцем.

Положительный результат достигается тем, что солнечная энергоустановка, содержащая солнечные модули, систему слежения за Солнцем, блок управления приводом азимутального поворота модулей и разворота их с запада на восток, вал. По данному предложению упомянутая система слежения включает компактный фотоэлектрический датчик положения Солнца, состоящий из каркаса в форме прямой трехгранной призмы, на двух боковых гранях которой, выполненных под углом 15-25°, размещены фотоэлементы слежения за Солнцем, а на третьей грани установлен командный фотоэлемент разворота модулей с запада на восток.

Целесообразно внутри каркаса разместить электронную схему управления приводом поворота солнечных модулей.

Целесообразно каркас датчика выполнить из теплопроводящего материала.

Целесообразно, в случае необходимости, датчик слежения поместить в прозрачный защитный колпак.

Вариант исполнения устройства, который наиболее полно характеризует существо предлагаемого изобретения, показан на фиг.1 и 2. На фиг.1 представлена схема солнечной энергоустановки, на фиг.2 показано устройство датчика слежения.

В плоскости рабочей поверхности солнечного модуля 1 укреплен фотоэлектрический датчик слежения за Солнцем 2, сигнал с которого поступает на блок управления 3 приводом механизма поворота 4 солнечного модуля 1, располагающегося на вертикальном валу 5.

Основой датчика слежения 2 является каркас 6, представляющий собой трехгранную прямую призму, на двух гранях которой 7 и 8, выполненных под углом 15-25°, размещены фотоэлементы слежения 9 (на грани 8 фотоэлемент не показан). На тыльной стороне третьей грани 10 расположен командный фотоэлемент разворота модулей 11 с запада на восток (не показан).

Солнечная энергоустановка работает следующим образом.

В течение светового дня фотоэлементы слежения на гранях 7 и 8 каркаса 6 выдают командные сигналы для блока управления 3 приводом 4 азимутального поворота солнечного модуля 1, который при этом разворачивается в направлении Солнца. Экспериментально установлено, что угол между гранями призмы около 20° обеспечивает максимальную эффективность управления приводом 4. Также установлено, что предлагаемое расположение фотоэлементов слежения обеспечивает в условиях переменной облачности или пасмурной погоды ориентацию солнечного модуля в направлении наиболее яркого участка неба. Фотоэлемент 11 на грани 10 с восходом Солнца генерирует командный сигнал разворота модуля с запада на восток. Ориентация модуля в зенитальном направлении является стационарной, зависит от географической широты местоположения энергоустановки и изменяется вручную несколько раз в год.

Выполнение каркаса 6 из теплопроводного материала (например, из алюминия) обеспечивает выравнивание температуры командных фотоэлементов в условиях различной освещенности и направления ветра, что повышает точность ориентации модуля.

Размещение блока управления 3, например, в микроэлектронном исполнении, внутри каркаса 6 упрощает устройство энергоустановки, а сам датчик слежения делает коммерчески более привлекательным.

Для уменьшения влияния осадков на систему слежения энергоустановки датчик слежения может быть помещен в прозрачный колпак.

Изготовленный макетный образец солнечной энергоустановки с описанной системой слежения показал эффективность ее функционирования и коммерческую привлекательность как самой установки, так и датчика слежения в самостоятельном исполнении для комплектации уже действующих энергоустановок.

1. Солнечная энергоустановка, содержащая солнечные модули, систему слежения за Солнцем, блок управления приводом азимутального поворота модулей и разворота их с запада на восток, отличающаяся тем, что упомянутая система слежения включает компактный фотоэлектрический датчик положения Солнца, состоящий из каркаса в форме прямой трехгранной призмы, на двух боковых гранях которой, выполненных под углом 20±5°, размещены фотоэлементы слежения за Солнцем, а на третьей грани установлен командный фотоэлемент разворота модулей с запада на восток.

2. Солнечная энергоустановка по п.1, отличающаяся тем, что внутри каркаса размещается электронная схема управления приводом поворота солнечных модулей.

3. Солнечная энергоустановка по п.1, отличающаяся тем, что каркас датчика выполнен из теплопроводящего материала.

4. Солнечная энергоустановка по п.1, отличающаяся тем, что датчик слежения помещен в прозрачный защитный колпак.



 

Похожие патенты:

Изобретение относится к области солнечных энергетических систем, в частности к управлению энергией, получаемой приемником солнечной энергии, таким как бойлер, печь и т.д.

Изобретение относится к солнечной энергетике и может найти применение в солнечных электростанциях для прямого преобразования солнечной энергии. .

Изобретение относится к области измерительной техники, в частности к области учета энергии, получаемой от источника энергии. .

Изобретение относится к солнечной энергетике и может быть использовано при конструировании и эксплуатации приемников солнечной энергии с транспортированием ее к потребителю без непосредственного участия человека.

Изобретение относится к гелиотехнике, в частности к регулировке светового солнечного потока в прозрачных проемах зданий и сооружений с целью максимального его использования.

Изобретение относится к устройствам для поворота преобразователей солнечной энергии и может быть использовано при создании гелиоустановок, работающих в режиме слежения за Солнцем.

Изобретение относится к области гелиотехники, в частности к установкам с использованием солнечной энергии для нагрева теплоносителя в действующих и проектируемых системах теплоснабжения с естественной и принудительной циркуляцией жидкости в контуре солнечных коллекторов. Гелиоэнергетическая установка содержит солнечные коллекторы, соединенные трубопроводами с теплообменником-аккумулятором, в гидравлическом контуре солнечных коллекторов установлены электромагнитные клапаны для управления потоком теплоносителя путем изменения схемы соединения солнечных коллекторов между собой, блок управления, включающий реле, соединенные через фоторезисторы с источником питания, работающие при различных уровнях солнечного излучения, и дополнительный фоторезистор в цепи питания катушек электромагнитных клапанов для их отключения при отсутствии или малой мощности солнечного излучения. Техническим результатом является поддержание параметров теплоносителя путем автоматического изменения схемы соединения солнечных коллекторов при изменении мощности солнечного излучения, что позволяет повысить эффективность работы гелиоэнергетической установки. 1 з.п. ф-лы, 3 ил.

Настоящее изобретение относится к способу управления работой жидкостепроводного устройства. Способ управления работой трубопроводного устройства с первым трубопроводным участком в горячей части и с соединенным с ним вторым трубопроводным участком в холодной части, при этом на первом трубопроводном участке расположен насос для подачи жидкости, заключающийся в запуске управляющей пуском насоса программы при активизации насоса, предусматривающей выполнение следующих стадий: A) задание подаваемого количества жидкости, Б) запуск цикла подачи жидкости, предусматривающего подачу заданного количества жидкости с первого трубопроводного участка на незаполненный второй трубопроводный участок, B) запуск цикла возврата жидкости, предусматривающего возврат поданного на второй трубопроводный участок количества жидкости на первый трубопроводный участок, а также определение температуры обратного потока возвращаемой жидкости на первом трубопроводном участке, Г) увеличение заданного подаваемого количества жидкости и выполнение одной из следующих подстадий: г1) повторение стадий А)-Г), если температура обратного потока возвращаемой жидкости выше его предельной температуры или равна ей, а увеличенное заданное подаваемое количество жидкости меньше предельного количества или равно ему, г2) прекращение выполнения управляющей пуском насоса программы и перевод насоса на нормальный режим работы, если увеличенное заданное подаваемое количество жидкости больше предельного количества, г3) прекращение выполнения управляющей пуском насоса программы, деактивизация насоса и изменение заданного подаваемого количества жидкости в сторону начального значения, если температура обратного потока ниже его предельной температуры. Это позволяет предотвратить повреждения на расположенном в холодной части втором трубопроводном участке из-за замерзания жидкости. 11 з.п. ф-лы, 3 ил.
Наверх