Детектор контроля капельного уноса

Изобретение относится к нефтегазовой, нефтехимической промышленности, в частности к устройствам контроля капельного уноса жидкостей на установках комплексной подготовки газа к транспорту. Сущность: детектор контроля капельного уноса включает зонд, размещаемый в потоке контролируемого газа, микрогидроциклон для формирования центробежного потока газа, соединенный входной трубкой с зондом, а выходной трубкой - с узлом учета контролируемого газа, ультразвуковой уровнемер для определения толщины слоев каждой из несмешивающихся жидкостей. Ультразвуковой уровнемер состоит из ультразвукового генератора, излучателя и приемника ультразвуковых колебаний, электронного блока ультразвукового уровнемера и измерительной камеры, размещенной в нижней части микрогидроциклона. При этом излучатель и приемник ультразвуковых колебаний установлены в измерительной камере, а электронный блок ультразвукового уровнемера подключен к дистанционному автоматическому блоку, предназначенному для расчета и дистанционной индикации массы и процентного содержания жидкостей, выносимых потоком контролируемого газа. Технический результат: обеспечение оперативного дистанционного контроля объема уноса, массы несмешивающихся жидкостей и их процентного содержания без остановки технологического процесса осушки. 1 ил.

 

Изобретение относится к нефтегазовой, нефтехимической промышленности, в частности к устройствам контроля капельного уноса жидкостей на установках комплексной подготовки газа к транспорту.

Оценка эффективности процесса осушки природного газа является одной из важнейших задач, особенно, если осушка осуществляется с использованием абсорбентов. Корректность этой оценки позволяет во многом установить недостатки сепарационного оборудования, исключить потери дорогостоящих абсорбентов.

В сложившейся практике контроля осушки газа важнейшим узлом в устройствах учета капельного уноса и мехпримесей в потоке газа является фильтрационное оборудование.

Основные проблемы в совершенствовании фильтрационного оборудования состоят в соблюдении условий изокинетичности и изотермичности потока газа в измерительном средстве, в увеличении срока эксплуатации фильтр-патронов, в снижении гидравлических сопротивлений.

Известен индикатор уноса капельной жидкости ИУ-1 [Ахлямов М.Н., Байгузин Ф.А., Шигапов И.М., Хайруллин Г.М. Методика и устройство измерения уноса капельной жидкости на установках подготовки газа// Газовая промышленность, №4, 2009. - c.79-80].

Недостаток данного устройства в том, что в устройстве не осуществляется оперативный дистанционный контроль объема уноса, массы несмешивающихся жидкостей и их процентного содержания.

Известно устройство измерения уноса капельной жидкости на установках подготовки газа, разработанные ООО ИВЦ «Инжехим» [Ахлямов М.Н., Байгузин Ф.А., Шигапов И.М., Хайруллин Г.М. Методика и устройство измерения уноса капельной жидкости на установках подготовки газа//Газовая промышленность, №4, 2009, - с.81].

Известное устройство капельного уноса указанных авторов состоит из устройства перемещения пробоотборного зонда, присоединяемого к штуцеру трубопровода газа, последовательно расположенных фильтр-патронов и участка измерения расхода газа. Устройство перемещения пробоотборного зонда позволяет оперативно вводить пробоотборную трубку диаметром 10 мм в контролируемое сечение трубопровода на глубину до 375 мм. Этим обеспечивается установление распределения скорости потока по сечению трубопровода и значение скорости в точке отбора. Участок измерения расхода газа выполнен в виде набора критических сопел и позволяет охватывать диапазон расходов, характерных для аппаратов осушки газа, с соблюдением условий изокинетичности и изотермичности отбора пробы.

В данном устройстве сохраняются недостатки, обусловленные использованием фильтр-патронов, и не осуществляется оперативный дистанционный контроль объема уноса, массы несмешивающихся жидкостей и их процентного содержания.

Анализ традиционных методов и технических средств оценки уноса капельной жидкости показывает, что гетерофазный поток газа, твердых частиц и жидких капель направляется на один и тот же фильтрующий элемент, что исключает оперативное дистанционное измерение массы несмешивающихся жидкостей и их процентного содержания без остановки технологического процесса осушки.

Задачей изобретения является повышение эффективности процесса осушки природного газа на установках комплексной подготовки газа к транспорту.

Технический результат, на достижение которого направлено изобретение, состоит в обеспечении оперативного дистанционного контроля объема уноса, массы несмешивающихся жидкостей и их процентного содержания без остановки технологического процесса осушки.

Поставленная задача и технический результат достигаются тем, что заявляемый детектор контроля капельного уноса включает зонд, размещаемый в потоке контролируемого газа, микрогидроциклон для формирования центробежного потока газа, соединенный входной трубкой с зондом, а выходной трубкой - с узлом учета контролируемого газа, ультразвуковой уровнемер для определения толщины слоев каждой из несмешивающихся жидкостей, состоящий из ультразвукового генератора, излучателя и приемника ультразвуковых колебаний, электронного блока ультразвукового уровнемера и измерительной камеры, размещенной в нижней части микрогидроциклона, при этом излучатель и приемник ультразвуковых колебаний установлены в измерительной камере, а электронный блок ультразвукового уровнемера подключен к дистанционному автоматическому блоку, предназначенному для расчета и дистанционной индикации массы и процентного содержания жидкостей, выносимых потоком контролируемого газа.

Схема детектора контроля капельного уноса при осушке газа представлена на чертеже. Заявленный детектор содержит зонд 1 для отбора газа из разных точек по сечению газопровода, микрогидроциклон 2, соединенный входной трубкой и краном 3 с зондом 1, а выходной трубкой с регулировочным краном 4 с узлом учета контролируемого газа 5, ультразвуковой уровнемер для определения толщины слоев каждой из несмешивающихся жидкостей, состоящий из ультразвукового генератора, излучателя и приемника ультразвуковых колебаний, электронного блока ультразвукового уровнемера (не показаны) и измерительной камеры 6 цилиндрической формы, размещенной в нижней части микрогидроциклона 2. Излучатель и приемник ультразвуковых колебаний установлены в измерительной камере 6, а ультразвуковой генератор и электронный блок ультразвукового уровнемера - в блоке 7. Электронный блок ультразвукового уровнемера подключен к дистанционному автоматическому блоку 8 для расчета и дистанционной индикации массы процентного содержания жидкостей, выносимых потоком контролируемого газа.

Краны 3 и 4 необходимы для соблюдения условия изокинетичности потока газа в выделенном слое - отбор газа осуществлять со скоростью, равной среднерасходной скорости потока в газопроводе.

Детектор контроля капельного уноса функционирует следующим образом. С помощью зонда, размещенного в сечении газопровода, выделенный гетерофазный поток, с соблюдением условий изокинетичности и изотермичности, подается на вход микрогидроциклона 2. В микрогидроциклоне 2, вследствие центробежного ускорения, осуществляется сепарация капель жидкостей из газового потока, которые собираются в нижней части микрогидроциклона 2, где установлена измерительная камера 6 с излучателем и приемником ультразвуковых колебаний импульсного ультразвукового генератора уровнемера.

Газ, освобожденный от капель жидкости, направляется из микрогидроциклона 2 по выходной трубке с краном 4 в узел учета 5 контролируемого газа.

С помощью дистанционного автоматического блока 8 изображение акустических колебаний в каждом возникшем слое жидкостей отображается на экране индикаторной панели.

Высота слоя каждой из несмешивающихся жидкостей определяется автоматически по результатам измерения времени распространения ультразвуковых колебаний в каждом слое и по скоростям распространения звука в этих жидкостях, значения которых предварительно вводят в дистанционный автоматический блок 8. Также автоматически, с учетом предварительно введенных значений плотностей жидкостей, определяются индивидуальные массы жидкостей уноса и их процентное соотношение на данный момент контроля уноса. С помощью дистанционного автоматического блока 8 эти данные архивируются и могут быть использованы в дальнейшем.

Предлагаемый детектор контроля капельного уноса, например, при осушке газа, в отличие от традиционных технических средств с использованием фильтр-патронов, дает возможность осуществлять дистанционный оперативный контроль массы и состава капельного уноса несмешивающихся жидкостей без остановки технологического процесса осушки.

Детектор контроля капельного уноса, включающий зонд, размещаемый в потоке контролируемого газа, микрогидроциклон для формирования центробежного потока газа, соединенный входной трубкой с зондом, а выходной трубкой - с узлом учета контролируемого газа, ультразвуковой уровнемер для определения толщины слоев каждой из несмешивающихся жидкостей, состоящий из ультразвукового генератора, излучателя и приемника ультразвуковых колебаний, электронного блока ультразвукового уровнемера, и измерительной камеры, размещенной в нижней части микрогидроциклона, при этом излучатель и приемник ультразвуковых колебаний установлены в измерительной камере, а электронный блок ультразвукового уровнемера подключен к дистанционному автоматическому блоку, предназначенному для расчета и дистанционной индикации массы и процентного содержания жидкостей, выносимых потоком контролируемого газа.



 

Похожие патенты:

Изобретение относится к устройству для измерения потока молока в смеси молока и воздуха. .

Изобретение относится к сельскому хозяйству, к области водоизмерения и водоучета в гидромелиоративных, преимущественно на оросительных системах, и может быть использовано для целей коммерческого и/или технологического водоизмерения и водоучета на участках открытых водораспределительных каналов на ровных участках и с перепадами местности, оборудованных перегораживающими и водосборными сооружениями.

Изобретение относится к измерительной технике по расходомерам, а именно к устройствам измерения объемного расхода жидких сред в открытых водоемах - каналах, ненапорных трубопроводах большого сечения и сточных лотках.

Изобретение относится к измерительной технике по расходомерам, а именно к способам и устройствам измерения объемного расхода жидких сред в открытых водоемах - каналах, не напорных трубопроводах большого сечения и сточных лотках.

Изобретение относится к приборостроительной промышленности, в частности к устройствам для непрерывного контроля малых величин расходов невязких жидкостей. .

Изобретение относится к измерительной технике и может быть использовано для измерения расхода порошкообразной среды в энергетике, металлургии и других отраслях промышленности.

Изобретение относится к измерению расхода жидкостей в безнапорных канализационных системах и может быть использовано для коммерческого учета объема сточных вод, сбрасываемых в городскую канализационную сеть.

Изобретение относится к горной автоматике, а более конкретно - к способам и средствам автоматического контроля расхода жидких продуктов обогащения и может быть использовано для автоматического контроля расхода минеральных пульп и суспензий, флотореагентов, оборотных шахтных вод, флотационных пульп и других продуктов на углеобогатительных, железорудных, полиметаллических и других обогатительных фабриках, на гидрошахтах и т.п.

Изобретение относится к технологии выделения гексафторида урана из многокомпонентных газовых смесей, содержащих гексафторид урана, фтористые соединения фосфора, хрома, фтороводород и компоненты воздуха.

Изобретение относится к технике очистки газов, например, воздуха от аммиака и других вредных примесей, образующихся при разложении органических веществ в сельсохозяйственном производстве, и может быть использовано в других технологических процессах.

Изобретение относится к технике разделения газовых смесей на компоненты. .

Изобретение относится к глубокой очистке газообразных фторидов, хлоридов, гидридов, инертных и других газов от взвешенных частиц и химических примесей. .

Изобретение относится к технике разделения газовых смесей на составляющие. .

Изобретение относится к технике разделения газовых смесей на составляющие. .

Изобретение относится к способу удаления сульфида водорода из потока природного газа
Наверх