Электродинамический сепаратор для выделения электропроводных немагнитных материалов

Изобретение относится к области разделения материалов по электропроводности во вращающемся магнитном поле и может быть использовано для сухой сепарации сыпучих немагнитных материалов, содержащих проводники и диэлектрики, в частности для извлечения частиц цветных металлов из порошков крупностью от 1 до 5 мм. Электродинамический сепаратор для выделения электропроводных немагнитных материалов включает в себя расположенный под питателем с возможностью вращения рабочий орган в виде диска из диэлектрического материала, соосно установленного под ним индуктора бегущего магнитного поля, выполненного в виде быстроходного ротора с постоянными магнитами чередующейся полярности, и разгрузочный бункер. Постоянные магниты расположены на периферии быстроходного ротора. Разгрузочный бункер выполнен в виде внутреннего и внешнего отсеков, имеющих коническую поверхность. Внутренний отсек выполнен с вертикальным бортом для обеспечения направления в него непроводящих частиц и перелета через его борт во внешний отсек проводящих частиц. Отношение угловой скорости вращения ротора (ω1) к угловой скорости вращения дискового рабочего органа (ω2) находится в диапазоне ω12=30÷40. Изобретение позволяет повысить эффективность разделения исходного материала и производительность сепарации. 1 ил., 1 табл.

 

Изобретение относится к области разделения материалов по электропроводности во вращающемся магнитном поле и может быть использовано для сухой сепарации сыпучих немагнитных материалов, содержащих проводники и диэлектрики, в частности для извлечения частиц цветных металлов из порошков крупностью от 1 до 5 мм.

Известен электростатический сепаратор (патент RU 2018374, дата приоритета 23.11.1990, В03С 7/02) для сепарации сыпучих материалов и разделения тонкозернистых порошков на проводники и диэлектрики, состоящий из герметичного корпуса, источника электрического поля, устройства для подачи исходного материала и сброса продуктов сепарации. Существенным недостатком этого сепаратора является его малая производительность и ограниченный верхний предел крупности неэлектропроводных частиц (не более 3 мм).

Известен электродинамический сепаратор (а.с. №1715426, дата приоритета 05.12.89, В03С 1/24) для извлечения цветных металлов из отходов промышленных предприятий и извлечения ценных компонентов из дробленого лома бытовой радиоаппаратуры. Сепаратор содержит загрузочный и разгрузочный бункера, транспортер из диэлектрического материала, выполненный в виде диска с разгрузочными окнами для удаления неэлектропроводных частиц при помощи скребка, индуктор бегущего магнитного поля, расположенный под транспортером соосно с ним и выполненный в виде диска с барабаном, в котором в пазах на диске индуктора под углом к диаметральной оси размещены постоянные магниты с чередующейся полярностью таким образом, чтобы своей длиной перекрывали площадь транспортера, не занятую перегрузочными окнами. К недостаткам этого устройства можно отнести сложную конструкцию приспособления для вывода неэлектропроводной фракции.

В качестве прототипа заявляемого устройства выбран электродинамический сепаратор (а.с. SU 1773488, дата приоритета 28.05.1990, В03С 1/24) для извлечения частиц цветных металлов из отходов промышленных предприятий и очистки материалов цветных металлов перед их дальнейшей переработкой. Сепаратор включает в себя расположенный под питателем с возможностью вращения рабочий орган в виде диска из диэлектрического материала, соосно установленного под ним индуктора бегущего магнитного поля, скребок и приемники продуктов разделения. При включении сепаратора приводятся во вращение дисковый индуктор и дисковый рабочий орган с распределителем питания, который подает исходный материал из питателя на рабочий орган. При вращении индуктора создается высокочастотное магнитное поле, вызывающее в электропроводных частицах вихревые токи, в результате взаимодействия которых с вращающимся магнитным полем индуктора возникает электродинамическая сила, выталкивающая электропроводные частицы цветных металлов в сторону уменьшения интенсивности магнитного поля по направлению от центра к периферии дискового рабочего органа. Перемещаясь под действием электродинамической силы, электропроводные частицы цветных металлов продвигаются через находящийся в контакте с ними неэлектропроводный материал, который задерживается на концентрических рифлениях дискового рабочего органа. Пройдя концентрические рифления (перепрыгивая через них), электропроводные частицы свободно перемещаются к краю рабочего органа и удаляются скребками в камеры разгрузочного бункера. А неэлектропроводные частицы, оставшиеся на поверхности рабочего органа, удаляются скребком в камеру для неэлектропроводных частиц. Дисковый рабочий орган вращается с малой скоростью, позволяющей не учитывать центробежные силы, действующие на разделяемые частицы. Недостатком данного сепаратора является низкая эффективность извлечения мелкого класса цветных металлов и низкая производительность устройства вследствие малой скорости вращения диска и использования скребков для удаления материала. Если увеличить скорость вращения рабочего органа до значений, при которых центробежная сила будет достаточно велика, чтобы вызвать саморазгрузку материала без участия скребков, то в этом случае продукты сепарации будут смешиваться, что приведет к снижению эффективности разделения.

Задачей настоящего изобретения является повышение эффективности разделения исходного материала и производительности сепаратора.

Для решения поставленной задачи предлагается следующая конструкция сепаратора (см. фиг.). Заявляемое устройство включает в себя вибропитатель (1), кольцевой дозатор (2), установленный под дозатором с возможностью вращения дисковый рабочий орган (3) с гладкой поверхностью из диэлектрического материала, соосно установленного под ним быстроходного ротора (дискового индуктора) (4) с расположенными по его периферии постоянными магнитами (5) чередующейся полярности и разгрузочный бункер с внутренним (6) и наружным (7) отсеками.

Дисковый рабочий орган (3) изготовлен из немагнитного неэлектропроводного материала, например текстолита, и расположен соосно над ротором (4), по периферии которого выполнены радиальные пазы. В пазах расположены постоянные магниты (5) чередующейся полярности. Ротор установлен на валу и приводится во вращение любым известным способом, например электродвигателем. Скорость вращения ротора - более 2000 об/мин. Дисковый рабочий орган приводится во вращение со скоростью порядка 50÷60 об/мин при помощи мотора-редуктора.

Скорость вращения дискового рабочего органа достаточна для перемещения частиц по гладкой поверхности к периферии диска за счет центробежной силы, кориолисовой силы и силы трения.

Повышенная по сравнению с прототипом скорость вращения дискового рабочего органа обеспечивает при одинаковой толщине слоя разделяемого материала повышение производительности пропорционально соотношению указанных скоростей.

Экспериментальные исследования показали, что в зависимости от свойств (крупности и электропроводности) перерабатываемого материала и свойств материала (шероховатость), из которого изготовлен диск, отношение угловой скорости вращения ротора (ω1) к угловой скорости вращения дискового рабочего органа (ω2) должно находиться в диапазоне

ω12=30÷40.

Примеры сепарации материала при различных скоростях вращения ротора и дискового рабочего органа приведены в таблице.

На модели устройства сепарировалась смесь, состоящая из частиц нержавеющей стали марки Х18Н9Т крупностью 2-3 мм и кварцевого песка.

Таблица
Скорость вращения ротора, об/мин Скорость вращения дискового рабочего органа, об/мин Извлечение металла в проводниковый продукт, % Производительность, кг/ч
1000 40 38 40
1500 40 62 40
2000 40 84 40
2000 60 68 40
2000 20 Разделение не происходит: материал не транспортируется по рабочему органу

Устройство работает следующим образом. Сепарируемая смесь с помощью вибропитателя (1) подается в кольцевой дозатор (2), из которого разгружается на дисковый рабочий орган (3), вращающийся с заданной скоростью вокруг вертикальной оси. Исходный материал за счет центробежной силы инерции, кориолисовой силы и силы трения смещается к периферии диска, под которым вращается быстроходный ротор (4) с постоянными магнитами (5) чередующейся полярности. Под действием высокочастотного магнитного поля вращающегося ротора, в электропроводных частицах, находящихся на периферии диска, наводятся вихревые токи, в результате взаимодействия которых с вращающимся магнитным полем ротора возникает электродинамическая сила, выталкивающая электропроводные частицы в вертикальном направлении согласно принципу Ленца. Равнодействующая вертикальной и горизонтальной скоростей обеспечивает траекторию полета проводящих частиц, по которой они перелетают через вертикальный борт внутреннего отсека (6) разгрузочного бункера, попадают в его наружный отсек (7), откуда происходит их разгрузка.

Непроводящие частицы, не испытывая воздействия переменного магнитного поля, движутся по гладкой поверхности дискового рабочего органа (3) под действием центробежной силы инерции, кориолисовой силы и силы трения, ударяются о вертикальный борт внутреннего отсека (6) разгрузочного бункера и скатываются по конической поверхности этого отсека к зоне их разгрузки.

Предложенный сепаратор по сравнению с прототипом позволяет повысить производительность и эффективность разделения материала, обеспечить снижение крупности конечного электропроводного продукта за счет того, что дисковый рабочий орган вращается с достаточно большой по сравнению с прототипом скоростью, чтобы обеспечить перемещение по нему материала к периферии под действием центробежной силы инерции и кориолисовой силы, где происходит непосредственное разделение на проводники и диэлектрики. Наличие магнитов только по периферии быстроходного индуктора позволяет сэкономить дорогостоящий магнитный материал. А поскольку в заявляемом устройстве разгрузка неэлектропроводного материала осуществляется за счет действия центробежной и кориолисовой силы, то отпадает необходимость в наличии скребков для его удаления с поверхности рабочего органа.

Таким образом, в заявляемом сепараторе в процессе разделения материала происходит саморазгрузка как электропроводного, так и неэлектропроводного продукта.

Испытания предложенного сепаратора показали, что обеспечивается разделение проводящих и непроводящих частиц с высокой эффективностью при существенно более простом по сравнению с прототипом конструктивном исполнении.

Электродинамический сепаратор для выделения электропроводных немагнитных материалов, включающий в себя расположенный под питателем с возможностью вращения рабочий орган в виде диска из диэлектрического материала, соосно установленного под ним индуктора бегущего магнитного поля, выполненного в виде быстроходного ротора с постоянными магнитами чередующейся полярности, и разгрузочный бункер, отличающийся тем, что постоянные магниты расположены на периферии быстроходного ротора, разгрузочный бункер выполнен в виде внутреннего и внешнего отсеков, имеющих коническую поверхность, причем внутренний отсек выполнен с вертикальным бортом для обеспечения направления в него непроводящих частиц и перелета через его борт во внешний отсек проводящих частиц, при этом отношение угловой скорости вращения ротора (ω1) к угловой скорости вращения дискового рабочего органа (ω2) находится в диапазоне ω12=30÷40.



 

Похожие патенты:

Изобретение относится к области магнитного обогащения магнетитовых руд для получения продуктов высокого качества. .

Изобретение относится к черной металлургии, в частности к устройствам для очистки колошниковых газов доменных печей. .

Изобретение относится к области магнитной сепарации, а именно к устройствам для извлечения магнитовосприимчивых частиц из жидкостных сред, и может быть использовано в горнодобывающей, металлургической и других отраслях промышленности.

Изобретение относится к области сельскохозяйственного машиностроения, а именно к разделению зернового вороха, и может быть использовано для сепарации семян сельскохозяйственных культур.

Изобретение относится к области сельскохозяйственного машиностроения, а именно к разделению зернового вороха, и может быть использовано для сепарации семян сельскохозяйственных культур.

Изобретение относится к черной металлургии, а именно к очистке колошникового газа доменных печей. .

Изобретение относится к черной металлургии, в частности к устройствам очистки доменного газа. .

Изобретение относится к областям энергетики и экологической защиты окружающей среды и может использоваться для обработки скважинных артезианских вод и для очистки промышленных и бытовых стоков

Изобретение относится к магнитному обогащению и может быть использовано для селективного разделения широкого класса минеральных смесей по их магнитным свойствам
Изобретение относится к способам, которые реализуют роботу обогатительного оборудования, предназначенного для переработки техногенно образованного магнитовосприимчивого сырья, гранулометрический состав которого представлен мелкими, мелкодисперсными и пылевидными фракциями

Изобретение относится к магнитному обогащению и может быть использовано для магнитной сепарации широкого класса пульп из минеральных смесей, а также в сухом виде. Электромагнитный сепаратор с бегущим магнитным полем включает вибростол с размещенными под ним токовыми обмотками, расположенными на магнитных полюсных наконечниках, питаемых трехфазным током с осями, направленными перпендикулярно сепарационному столу. Индуктор бегущего магнитного поля состоит из двух А и Б частей с возможностью изменения частоты питаемого тока и расстояния до сепарируемой поверхности с противоположным направлением движения магнитного поля в них, токовые катушки индуктора могут быть смещены параллельно друг другу в сторону движения пульпы и состоят из нескольких секций с возможностью отключения части из них. При этом в зависимости от выбранного шага смещения угол между А и Б частями индуктора может изменяться от 180 до 90 градусов. Загрузочное устройство для пульпы размещено в центре между частями индуктора. Изобретение позволяет повысить эффективность и производительность процесса магнитной сепарации. 1 з.п. ф-лы, 2 ил.

Изобретение относится к реактору с бегущим полем и к способу отделения намагничивающихся частиц от жидкости с применением реактора с бегущим полем. Реактор (1) с бегущим полем для отделения намагничивающихся частиц от жидкости (5) содержит трубчатый реактор (2), на наружной окружности которого расположен по меньшей мере один магнит (3) для создания бегущего поля и внутреннее пространство (4) которого предназначено для прохождения потока жидкости (5). Во внутреннем пространстве (4) трубчатого реактора (2) расположено вытеснительное тело (6), которое вводит жидкость (12) во внутреннее пространство (4) трубчатого реактора (2), которая смешивается с протекающей через реактор (2) жидкостью (5). Изобретение позволяет предотвратить загустение, увеличить вязкость жидкости и повысить выход готового продукта. 2 н. и 15 з.п. ф-лы, 2 ил.

Изобретение касается устройства для осаждения ферромагнитных частиц из суспензии. Устройство включает в себя вертикально ориентированный трубчатый реактор, через который может протекать суспензия, у которого имеется, если смотреть в направлении протекания, первая область и вторая область и средства для создания магнитного поля вдоль внутренней стенки реактора. Трубчатый реактор во второй области включает в себя трубу для стекания жильной породы и охватывающий эту трубу канал для осаждения концентрата. Площадь поперечного сечения трубчатого реактора во второй области больше, чем в первой области. Средства для создания магнитного поля вдоль внутренней стенки реактора, по меньшей мере, частично охватывают вторую область. В направлении протекания предусмотрена третья область реактора с трубой для стекания жильной породы и охватывающим эту трубу каналом для осаждения концентрата. Площадь поперечного сечения реактора в третьей области больше, чем во второй области. Технический результат - повышение выхода магнитных частиц. 6 з.п. ф-лы, 6 ил.

Группа изобретений относится к вариантам устройства для выделения ферромагнитных частиц из суспензии. По одному из вариантов устройство для выделения ферромагнитных частиц из суспензии содержит трубчатый реактор, имеющий вход и выход, и предназначенный для прохождения через него потока суспензии, кольцеобразный экран, который разделяет внутреннее пространство реактора на внутренний кольцевой зазор и наружный кольцевой зазор, соединенный с трубопроводом для отвода отделенных частиц, средства для создания воздействующего на реактор бегущего магнитного поля и клапан для установки поперечного сечения раскрыва наружного кольцевого зазора. Предусмотрен управляющий блок, соединенный со средством создания бегущего магнитного поля и с клапаном и выполненный с возможностью регулирования поперечного сечение раскрыва наружного кольцевого зазора в зависимости от фактического положения амплитуды и/или фазы бегущего магнитного поля. По другому из вариантов, устройство для выделения ферромагнитных частиц из суспензии содержит мембранный насос, сторона всасывания которого входит в реактор и интергированный в трубопровод. Предусмотрен управляющий блок, соединенный со средством создания бегущего магнитного поля и с мембранным насосом и выполненный с возможностью регулирования рабочего хода мембранного насоса в зависимости от фактического положения амплитуды и/или фазы бегущего магнитного поля. Технический результат - повышение эффективности выделения ферромагнитных частиц из суспензии. 2 н. и 8 з.п. ф-лы, 4 ил.

Изобретение относится к вихретоковому отделению и может быть использовано для отделения металлических частиц от потока частиц. Вихретоковый сепаратор содержит барабан сепаратора, выполненный с возможностью формирования из потока частиц по меньшей мере первой фракции частиц, движущейся от барабана по первой траектории, и второй фракции частиц, движущейся от барабана по второй траектории, подающее устройство, размещенное спереди по потоку от барабана сепаратора, для подачи частиц к указанному барабану сепаратора, и разделительный элемент, выполненный сзади по потоку от барабана сепаратора для разделения первой фракции частиц и второй фракции частиц. Сепаратор дополнительно содержит сенсорное устройство, выполненное с возможностью обнаружения частиц, по меньшей мере их количества и/или свойств материала, по меньшей мере части одной из фракций частиц. Разделительный элемент установлен с возможностью перемещения на сепараторе таким образом, что расстояние (d) между разделительным элементом и барабаном сепаратора, и/или ориентация разделительного элемента относительно барабана сепаратора, и/или скорость транспортировки подающего устройства являются регулируемыми в зависимости от сигнала сенсорного устройства на основании количества и/или свойств материала обнаруженных частиц. Сенсорное устройство содержит передающую часть, такую как оптический излучатель, выполненную с возможностью передачи энергии в форме луча, и принимающую часть, такую как оптический приемник, для измерения отражения и/или затухания при прохождении частицей пучка энергии, причем сенсорное устройство содержит третью сенсорную часть, такую как электрическая катушка, выполненную с возможностью обнаружения электромагнитных характеристик частиц, проходящих указанную третью сенсорную часть. Сенсорное устройство содержит секцию обнаружения, выполненную с возможностью обеспечения прохождения выборки (т.е. небольшого процента) первой фракции частиц. Сенсорное устройство выполнено с возможностью вычисления содержания металла первой фракции частиц на основании сенсорных подсчетов и заданного отношения средней массы частиц между неметаллическими и металлическими частицами, а сепаратор выполнен с возможностью регулировки положения разделительного элемента, по существу, непрерывно, например каждые несколько секунд, на основании указанного сигнала от сенсорного устройства. Технический результат - повышение эффективности отделения частиц от потока отходов. 2 н. и 14 з.п. ф-лы, 6 ил.
Наверх