Способ работы тангенциальной топки

Изобретение относится к теплоэнергетике и может быть использовано в топках паровых котлов при сжигании шлакующих углей. Способ работы тангенциальной топки с угловым многоярусным блочным расположением горелок, ориентированных по касательной к условной окружности, путем подачи в последние равного расхода топливно-воздушной смеси и газов рециркуляции при отключении блока горелок, расходы топливно-воздушной смеси и газов рециркуляции, подаваемых в блоки горелок, устанавливают в соответствии с зависимостями:

Bi=(0,4684-0,045i)B, i=2, 3, 4;

ri=(0,0267i3-0,250i2+0,8033i-0,5507)r, i=1, 2, 3, 4,

где

i - номер горелочного блока, начиная счет с отключенного (для которого принимается B1=0) по ходу движения газов;

Вi - расход топливно-воздушной смеси, подаваемой в i-й горелочный блок;

ri - расход газов рециркуляции, подаваемых в i-й горелочный блок;

В - общий расход топливно-воздушной смеси, подаваемой в топку;

r - общий расход газов рециркуляции, подаваемых в топку. Изобретение позволяет повысить качество сжигания топлива и эксплуатационную надежность путем устранения температурной неравномерности в зоне активного горения и предотвращения шлакования экранных поверхностей нагрева при отключении блока горелок. 2 ил.

 

Изобретение относится к теплоэнергетике и может быть использовано в топках паровых котлов при сжигании шлакующих бурых углей.

Известен способ работы вертикальной призматической топки квадратного сечения с тангенциальным многоярусным блочным расположением горелок, в котором для устранения температурных неравномерностей, возникающих в топочной камере при отключении горелочного блока, количество газов рециркуляции, распределяемых в каждый горелочный блок, определяется в зависимости от местоположения отключенного блока (А.с. СССР №1703913, кл. F23C 9/08, 1992). Недостатком такого способа является то, что такое распределение приводит к повышению локальной подачи газов рециркуляции (например, количество газов рециркуляции, подаваемых в четвертый горелочный блок, начиная с отключенного по ходу движения топочных газов, превышает 41% от общего их расхода). Это вызывает балластирование факела этой горелки низкотемпературными продуктами сгорания и приводит к нарушениям процесса горения топлива и увеличению потерь теплоты с механическим недожогом.

Также известен способ работы парогенератора (А.с. СССР №901731, кл. F23C 5/00, 1980) с расположенными многоярусными горелками, в котором для устранения температурных неравномерностей расход топлива через горелки каждого яруса увеличивают от яруса к ярусу в направлении сверху вниз. Такой способ позволяет снизить только тепловую неравномерность по высоте, когда максимум температуры газов, зафиксированный в области верхнего яруса горелок, уменьшается за счет увеличения теплового напряжения в нижних ярусах после соответствующего перераспределения топлива. Однако температурная неравномерность, вызванная отключением части горелок каждого яруса, сохраняется, что вызывает шлакование и снижает надежность эксплуатации.

Для снижения температурных неравномерностей, но уже в сечениях топочной камеры тангенциальной топки, оборудованной угловыми многоярусными горелками, направленными по касательной к условной окружности в способе работы (Патент РФ №2324109, МПК, кл. F23C 5/08, 2008), предлагается изменить расход топлива по работающим блокам горелок при отключении одного. Такой расход топлива будет неодинаков в различные блоки горелок в зависимости от места положения отключенного блока. Негативным моментом при реализации указанного способа является то обстоятельство, что планируется несколько разгрузить одну из работающих мельниц и настолько же загрузить другую. Следует отметить, что даже равная загрузка топливом работающих блоков горелок (в случае отключения одного из них) сопровождается необходимостью увеличения производительности каждой работающей углеразмольной мельницы примерно на 33% с тем, чтобы обеспечить ту же выработку пара в паровом котле, что и при работе всех горелочных блоков. В предлагаемом же способе работы топочного устройства (Патент РФ №2324109, МПК7, кл. F23C 5/08, 2008) одна из мельниц дополнительно должна увеличить подачу топлива в блок горелок еще на 23-24%, что может негативно сказаться на качестве размола угля и на обеспечении сохранения ее вентиляционной способности.

Наиболее близким по технической сущности к предлагаемому способу является способ работы вертикальной призматической топки квадратного сечения с блочным угловым тангенциальным многоярусным расположением горелок (А.с. СССР №922425, кл. F23C 5/12, 1982), реализованный в устройстве (Процайло М.Я. Освоение и исследование опытно-промышленного котла БК3-500-140-1 с тангенциальной топкой для низкотемпературного сжигания Канско-Ачинских углей. / М.Я.Процайло, Ю.Л.Маршак, М.С.Пронин и др. // Теплоэнергетика. - 1988. - №1. - С.5-12), в котором расход топливно-воздушной смеси, а также газов рециркуляции по горелочным блокам устанавливается равный. Основным недостатком известного способа является неравномерность температур газов, вызванная отклонением факела в сторону экранов топки, что является следствием отключения блока горелок. Причем местоположение наиболее и наименее теплонапряженных участков в объеме и на поверхности стен топочной камеры зависит от расположения отключенного блока горелок. Смещение высокотемпературного ядра горения в сторону экранных поверхностей нагрева вследствие указанного отключения приводит к их интенсивному шлакованию и уменьшению суммарного тепловосприятия топки.

В основу изобретения положена задача повышения качества сжигания и эксплуатационной надежности путем устранения температурной неравномерности в зоне активного горения и предотвращения шлакования экранных поверхностей нагрева при отключении блока горелок.

Относительно способа эта задача решается тем, что в способе работы тангенциальной топки при отключении горелочного блока (под отключением блока горелок понимается прекращение подачи топливно-воздушной смеси через этот блок в топку) расходы топливно-воздушной смеси и газов рециркуляции, подаваемых в блоки горелок, устанавливают в соответствии с зависимостями:

Bi=(0,4684-0,045i)B, i=2, 3, 4,

ri=(0,0267i3-0,250i2+0,8033i-0,5507)r, i=1, 2, 3, 4,

где

i - номер горелочного блока, начиная счет с отключенного (для которого принимается В1=0) по ходу движения газов;

Bi - расход топливно-воздушной смеси, подаваемой в i-й горелочный блок;

ri - расход газов рециркуляции, подаваемых в i-й горелочный блок;

В - общий расход топливно-воздушной смеси, подаваемой в топку;

r - общий расход газов рециркуляции, подаваемых в топку.

При отключении блока горелок тангенциальной топки высокотемпературное ядро факела смещается в сторону отключенного блока. Для того чтобы снизить уровень температур в этой области, необходимо уменьшить расход топливно-воздушной смеси в горелочный блок, расположенный перед отключенным блоком по ходу движения топочных газов, а кроме того, увеличить подачу газов рециркуляции через этот блок в топочную камеру. Зона низких температур, наоборот, находится в противоположной стороне, поэтому в блок горелок, расположенный сразу за отключенным блоком по ходу движения топочных газов, подается повышенный расход топливно-воздушной смеси, а газы рециркуляции подаются туда, наоборот, в меньшем количестве. В отключенный блок горелок направляются только газы рециркуляции. Общий расход топливно-воздушной смеси и газов рециркуляции, подаваемых в топку, остается таким же, что и в случае работы всех горелочных блоков, чтобы не снизить паропроизводительность котла.

На фиг.1 изображен котел с тангенциальной экранированной топкой, в которой осуществляется предлагаемый способ; на фиг.2 - разрез А-А на фиг.1.

Паровой котел содержит вертикальную призматическую экранированную топочную камеру 1 и конвективную шахту 2. В каждом углу топки 1 поярусно блочно смонтированы горелки 3, которые ориентированы тангенциально условной окружности. Измельченное в мельницах 4 и прошедшее через сепаратор 5 топливо поступает через горелки 3 в топочную камеру, где и сгорает. Для подогрева воздуха, используемого для горения, применяется воздухоподогреватель 6, установленный в конвективной шахте 2. Подогретый после воздухоподогревателя воздух частично по воздухопроводу 7 направляется в мельницы 4 и обеспечивает транспорт угольной пыли в горелки 3 (первичный воздух), а частично по воздухопроводу 8 поступает прямо в горелки (вторичный воздух). По газопроводам 9 в горелки 3 поступают газы рециркуляции, которые отбирают из хвостовой части конвективной шахты 2.

Способ работы тангенциальной топки осуществляется следующим образом. При работе всех горелочных блоков топливно-воздушная смесь и газы рециркуляции подаются через горелки в топку, причем расход их по горелочным блокам устанавливается равный. При отключении горелок в одном из углов топочной камеры (под отключением блока горелок понимается прекращение подачи топливно-воздушной смеси через этот блок в топку) расходы топливно-воздушной смеси и газов рециркуляции, подаваемых в блоки горелок, устанавливают в соответствии с зависимостями:

Bi=(0,4684-0,045i)B, i=2, 3, 4,

ri=(0,0267i3-0,250i2+0,8033i-0,5507)r, i=1, 2, 3, 4,

где

i - номер горелочного блока, начиная счет с отключенного (для которого принимается В1=0) по ходу движения газов;

Bi - расход топливно-воздушной смеси, подаваемой в i-й горелочный блок;

ri - расход газов рециркуляции, подаваемых в i-й горелочный блок;

В - общий расход топливно-воздушной смеси, подаваемой в топку;

r - общий расход газов рециркуляции, подаваемых в топку.

При отключении блока горелок общий расход топлива и воздуха, подаваемого в топку, сохраняется таким же, как и в случае работы всех блоков горелок. Указанное распределение топливно-воздушной смеси и газов рециркуляции в блоки горелок при отключении одного из них позволяет выровнять перепад температур в сечениях топочной камеры.

Примером конкретного выполнения предлагаемого способа работы тангенциальной топки, оборудованной угловым блочным многоярусным расположением горелок, ориентированных по касательной к условной окружности, может служить топочная камера котла Е-500 Красноярской ТЭЦ-2.

При номинальной паровой производительности котла (500 т/ч) расход Ирша-Бородинского угля составляет 25,1 кг/с, а воздуха (при избытке воздуха в топке 1,2) - 161,622 кг/с. Общий расход газов рециркуляции, подаваемых в топочную камеру, составляет 29,116 кг/с. При работе всех горелочных блоков расходы топливно-воздушной смеси и газов рециркуляции, подаваемых в них, устанавливаются равными и составляют в каждый: топлива - 6,275 кг/с, воздуха - 40,4055 кг/с и газов рециркуляции - 7,279 кг/с. При отключении одного горелочного блока расходы топливно-воздушной смеси и газов рециркуляции в горелочные блоки устанавливаются согласно представленных зависимостей.

В первый (отключенный блок горелок) расход топливно-воздушной смеси составляет 0 кг/с, а расход газов рециркуляции - 0,873 кг/с.

Во второй, считая от отключенного по ходу движения топочных газов, горелочный блок: топлива - 9,495 кг/с, воздуха - 61,142 кг/с и газов рециркуляции - 7,867 кг/с.

В третий, считая от отключенного по ходу движения топочных газов, горелочный блок: топлива - 8,366 кг/с, воздуха - 53,869 кг/с и газов рециркуляции - 9,632 кг/с.

В четвертый, считая от отключенного по ходу движения топочных газов, горелочный блок: топлива - 7,236 кг/с, воздуха - 46,596 кг/с и газов рециркуляции - 10,830 кг/с.

Таким образом, предлагаемое техническое решение позволяет достичь задачи изобретения - повысить качество сжигания и эксплуатационную надежность путем устранения температурных неравномерностей в объеме топочной камеры, тем самым снизить интенсивность шлакования экранов в местах отклонения факела, улучшить условия протекания процессов теплообмена, при этом удается сократить число остановов котла на расшлаковку.

Способ работы тангенциальной топки с угловым многоярусным блочным расположением горелок, ориентированных по касательной к условной окружности, путем подачи в последние равного расхода топливно-воздушной смеси и газов рециркуляции, отличающийся тем, что при отключении блока горелок расходы топливно-воздушной смеси и газов рециркуляции, подаваемых в блоки горелок, устанавливают в соответствии с зависимостями:
Вi=(0,4684-0,045i)B, i=2, 3, 4;
ri=(0,0267i3-0,250i2+0,8033i-0,5507)r, i=1, 2, 3, 4,
где
i - номер горелочного блока, начиная счет с отключенного (для которого принимается Bi=0) по ходу движения газов;
Вi - расход топливно-воздушной смеси подаваемый в i-й горелочный блок;
ri - расход газов рециркуляции подаваемый в i-й горелочный блок;
В - общий расход топливно-воздушной смеси подаваемой в топку;
r - общий расход газов рециркуляции подаваемый в топку.



 

Похожие патенты:

Изобретение относится к способу удаления отложений с внутренних и наружных поверхностей подводящих сопл или подводящих труб топочных установок, в которых из рециркулируемого отходящего газа, который снова подводят к топочной камере, оседают эти отложения, причем на отложения подают жидкую или парообразную среду.

Изобретение относится к теплоэнергетике , может быть использовано в топках паровых котлов при сжигании шлакующихся углей и имеет целью повышение качества сжигания и эксплуатационной надежности путем устранения Температурной неравномерности в зоне активного горения и предотвращения шлакования экранных поверхностей нагрева при отключении блока горелок.

Изобретение относится к энергетике и может быть использовано в котлоагрегатах. .

Изобретение относится к энергетике и может быть использовано в котлостроении. .

Топка // 1339348
Изобретение относится к теплоэнергетике и .м.б. .

Котел // 1191675

Топка // 1041802

Изобретение относится к топочным устройствам парогенераторов с пылевым сжиганием углей, может быть использовано в теплоэнергетике и позволяет повысить устойчивость воспламенения топлива, полноту его сгорания, снизить образование окисей азота NOx и уменьшить их выброс в атмосферу.

Изобретение относится к теплоэнергетике, может быть использовано в топках паровых котлов тепловых электрических станций при сжигании шлакующих углей и при своем использовании обеспечивает повышение качества сжигания и эксплуатационной надежности путем устранения температурной неравномерности в зоне активного горения для предотвращения шлакования экранных поверхностей нагрева при отключении одной из горелок.

Изобретение относится к теплоэнергетике, может быть использовано на тепловых электростанциях и позволяет исключить недожог топлива с провалом и повысить эффективность выгорания пыли в центральной камере сгорания.

Изобретение относится к топочным устройствам мощных энергоблоков, может быть использовано в теплоэнергетике и позволяет улучшить сжигание топлива, снизить образование оксидов азота NOx и уменьшить их выброс в атмосферу с одновременным уменьшением шлакования трубчатых экранов кольцевой камеры сгорания.

Изобретение относится к теплоэнергетике и может быть использовано в топках паровых котлов при сжигании шлакующих углей. .

Топка // 2343347
Изобретение относится к области теплоэнергетики, может быть использовано на тепловых электростанциях в котлах с жидким шлакоудалением и позволяет произвести растопку котла, а после растопки обеспечить подсветку надподового пространства центральной камеры сгорания для увеличения эффективности вытекания жидкого шлака.

Изобретение относится к теплоэнергетике и может быть использовано в топках паровых котлов при сжигании шлакующих углей. .

Изобретение относится к теплоэнергетике и может быть использовано в топках паровых котлов тепловых электрических станций при сжигании шлакующих бурых углей. .

Топка // 2317485
Изобретение относится к области теплоэнергетики и может быть использовано на тепловых электрических станциях для растопки котлов и прогрева факелом растопочного горелочного устройства надподового пространства с целью эффективной эвакуации жидкого шлака в котлах с жидким шлакоудалением.

Топка // 2473010
Изобретение относится к энергетике и может быть использовано на котлах тепловых электростанций и промышленных котельных агрегатах, работающих на газообразном топливе
Наверх