Низкоэнергетический способ для получения аммиака или метанола

Изобретение относится к области химии и энергетики. Способ использования тепла синтез-газа для получения сверхкритического пара в низкоэнергетической установке получения аммиака или метанола включает в себя стадию 1 риформинга или частичного окисления, по меньшей мере один генератор 3 сверхкритического пара, имеющий рубашечную сторону и трубчатую сторону, по меньшей мере один перегреватель 14, по меньшей мере одну турбину 17 с противодавлением, по меньшей мере одну турбину 23 для экстракции и конденсации, по меньшей мере один насос 7 для подачи питающей воды в котел. Синтез-газ 2 подается в рубашечную сторону генератора 3 сверхкритического пара. В генератор 3 сверхкритического пара подается питающая вода 4 под давлением. Поток 13 питающей воды регулируется для поддержания постоянной температуры пара на выходе из генератора сверхкритического пара в диапазоне 375-500°С. Сверхкритический пар получают в генераторе 3 при давлении 225-450 бар. Сверхкритический пар далее нагревается в перегревателе 14 до температуры 500-750°С и подается в турбину 17 с противодавлением. Изобретения позволяют снизить энергоемкость установки. 2 н. и 18 з.п. ф-лы, 4 ил., 2 табл. 2 пр.

 

Изобретение относится к способу использования тепла синтез-газа для получения сверхкритического пара в низкоэнергетической установке получения аммиака или метанола и к установке, подходящей для его проведения, для достижения экономии энергии и преимуществ, связанных с общими затратами, т.е. с улучшением экономики способа. В частности, в изобретении раскрывается способ получения сверхкритического пара способом, предотвращающим коррозию из-за распыления металла трубопроводов генератора пара. Температура сверхкритического пара находится под контролем и удерживается постоянной посредством регулирования потока подаваемой воды в генератор сверхкритического пара.

Синтез-газ содержит различные количества моноокиси углерода, диоксида углерода и водорода. Их получают или из каменного угля, тяжелой топливной нефти, или из аналогичных сырьевых материалов газификацией или паровым риформингом углеводородных топлив, таких как природный газ или нафта. Синтез-газ используют, например, в качестве промежуточных продуктов для промышленного получения метанола или аммиака.

Получение синтез-газа может быть реализовано различными способами с использованием двух основных стадий: частичного окисления и парового риформинга или параллельно, или последовательно. Наиболее широко применяемым способом является комбинация эндотермической реакции парового риформинга в первом аппарате риформинга и последующего экзотермического частичного окисления с последующим повторением эндотермической реакции риформинга во втором аппарате риформинге. Также были предложены схемы способа, которые частично обходятся без стадии эндотермического риформинга. Стадии риформинга проводятся с использованием специальных катализаторов. Кроме того, полностью эндотермический паровой риформинг без стадии вторичного риформинга, а также полностью автотермический риформинг, т.е. экзотермическое частичное окисление с последующей стадией эндотермической реакции риформинга в емкости, аналогичной второму риформингу, являются вариантами настоящего изобретения. Все эти схемы получения синтез-газа могут комбинироваться с адиабатическим предварительным риформингом, как первой стадии для превращения высших углеводородов в исходном материале в СН4, Н2, СО и СО2, и, таким образом предотвращать образование сажи на катализаторе. Также могут быть использованы так называемые реакторы частичного окисления (ЧОКС-) без катализатора. Использование реакторов, содержащих мембраны для транспорта кислорода, позволяет объединить получение кислорода и синтез-газа в одной емкости, чтобы исключить отдельное получение кислорода и тем самым снизить как капиталовложения, так затраты на эксплуатацию, как описано в DE 102004049076A1.

Расход энергии в установках получения аммиака и метанола довольно высокий из-за потребностей в энергии для проведения реакции риформинга для получения синтез-газа и в энергии для создания повышенного давления, которое требуется для синтеза аммиака или метанола. Тепло, расходуемое секцией риформинга в установках для получения аммиака или метанола, используется для получения пара, который используется в турбинах или в приводах компрессора в соответствии с циклом Клаузиуса-Рэнкина. В общеизвестных системах для получения пара обычно используются три следующих дорогих типа оборудования в этой секции: котел с более высоким циклом давления пара со стороны рубашки и паровой барабан в комбинации с перегревателем пара. Из-за недостаточной стойкости к коррозии из-за распыления металла всех известных материалов невозможен полный перегрев пара в газовой линии по способу. Следовательно, по меньшей мере один дополнительный перегреватель, использующий тепло топочных газов или тепло от удаляемых газов газового риформера, или от топочного нагревателя, должен быть расположен в паровой линии для достижения достаточной термодинамической эффективности.

Помимо использования тепла от секции риформинга также используются другие источники технологического тепла при проведении предварительного нагревания потоков в различных процессах и коммунальных службах, при этом в известном уровне техники уже реализуется очень высокая степень интеграции тепла в установках для получения аммиака или метанола, что делает значительные дальнейшие усовершенствования трудной задачей. Однако в условиях, когда цены на энергию постоянно растут, очень важно и дальше повышать эффективность такого способа до оптимального уровня.

Утилизация пара с более высокими параметрами, который используется в энергетических установках, приводит к такому усовершенствованию в соответствии с законом Карно. Однако конфигурация паровой системы для способов с синтез-газом очень отличается от конфигурации энергетической установки, и источники тепла для получения пара и его перегревания также отличаются. Когда нагревается паровой генератор или перегреватель посредством газа, полученного в способе, который имеет высокое содержание СО, как в синтез-газе, критической проблемой является исключение коррозии из-за распыления металла. В общеизвестных установках с синтез-газом котел работает при температуре испарения в двухфазном режиме ниже критической температуры воды. Эффективное охлаждение трубопроводов при этом условии работы удерживает температуру стенок трубопроводов на низких уровнях, чтобы тем самым исключить коррозию из-за распыления металла. Эта проблема очевидно не относится к топочным котлам в энергетических установках с низкими парциальными давлениями СО в дымовом газе.

Общепринятой практикой в современных установках для получения аммиака или метанола является то, что каждый компрессор приводится в действие своей собственной однокорпусной паровой турбиной. Эти турбины специально сконструированы для работы при сравнительно высокой скорости, чтобы тем самым устранить необходимость в коробках передач, по меньшей мере в корпусах компрессоров низкого давления. Так как механические выходы турбин должны соответствовать энергетическим потребностям отдельных компрессоров, то их соответствующие расходы пара, таким образом, также должны быть указаны.

Паровые системы также должны обеспечивать паром с соответствующим уровнем давлений риформеры для проведения способа. Эти обычно средние уровни давлений задаются посредством рабочих давлений в соответствующих секциях для получения синтез-газа. Для получения требуемых количеств пара обычно пар отводится от более крупных турбин при соответствующих уровнях давления. Эти возможности отвода пара усложняют конструкцию турбин и приводят к необходимости сравнительно дорогих машин в общеизвестных установках.

Целью изобретения поэтому является обеспечение способа, который является как энергосберегающим, так и экономически эффективным, который совмещает способ получения сверхкритического пара оптимальных температур и давлений и который позволяет обойти проблемы коррозии из-за распыления металла трубопроводов парового генератора, как описано выше. Также целью изобретения является обеспечение установкой, подходящей для проведения такого способа.

Это достигается посредством способа использования тепла синтез-газа для получения сверхкритического пара в низкоэнергетической установке получения аммиака или метанола, включающего в себя стадию риформинга или частичного окисления, по меньшей мере один генератор сверхкритического пара, по меньшей мере один перегреватель, по меньшей мере одну турбину с противодавлением, по меньшей мере одну турбину для экстракции и конденсации и по меньшей мере один насос для подачи питающей воды в котел. В этом способе синтез-газ образуется на стадии риформинга или частичного окисления, и используется генератор сверхкритического пара для извлечения тепла. В этом способе образованный синтез-газ подается в рубашку генератора сверхкритического пара, в генератор сверхкритического пара подается питающая вода под давлением, поток питающей воды под давлением регулируется для поддержания температуры пара на выходе из генератора сверхкритического пара в диапазоне от 375 до 500°С для предотвращения возникновения коррозии из-за распыления металла, при этом точная величина температуры зависит от состава газа в способе и от конструкции генератора пара; сверхкритический пар получают в генераторе сверхкритического пара при давлении от 225 до 450 бар и затем сверхкритический пар нагревается в перегревателе до температуры от 500 до 750°С, и сверхкритический пар, выходящий из перегревателя, подается в турбину с противодавлением.

Возможно, но не обязательно, стадия риформинга или частичного окисления, где получают синтез-газ, выбирается из группы, включающей в себя первый риформер, комбинацию первого и второго риформеров, риформер, нагреваемый газом, автотермальный риформер, камеру частичного окисления, мембранный риформер с мембранами для переноса кислорода, каталитическое частичное окисление или их комбинацию.

Другие возможности относятся к генератору сверхкритического пара. Рекомендованная температура впуска на сторону процесса находится в диапазоне от 550 до 1100°С и она зависит от особенностей стадии риформинга или частичного окисления, используемого в установке. Так как определенное количество тепла обеспечивается газом в способе, то и скорость потока питающей воды, и температура впуска в генератор пара определяют температуру выпуска критического пара. Температура сверхкритического пара, выходящего из генератора сверхкритического пара, поддерживается постоянной и возможно регулируется посредством управления скоростью насоса для подачи питающей воды. В отличие от известного уровня техники, где реализуются только параметры субкритического пара, более высокие температура и давление сверхкритического пара позволяют обеспечить более высокую эффективность в соответствии с циклом Карно.

Другие воплощения в соответствии с настоящим изобретением относятся к турбине с противодавлением, которая извлекает тепловую энергию из сжатого пара и превращает ее в механическую работу. Способ может быть спроектирован таким образом, чтобы турбина с противодавлением являлась единственным драйвером воздушного компрессора в процессе или компрессора синтез-газа. Давление сверхкритического пара понижается до уровня давления пара от 100 до 130 бар в турбине с противодавлением, и затем пар смешивается с насыщенным паром высокого давления, полученным посредством парового котла в секции синтеза аммиака и метанола, и далее пар перегревается. Этот пар затем подается в обычную паровую турбину высокого давления, имеющую часть для извлечения и конденсации пара среднего давления.

Альтернативно уровень выпускного давления турбины с противодавлением может быть аналогичен уровню регулярного среднего давления пара. Обычно уровень регулярного среднего давления пара несколько выше уровня давления получаемого синтез-газа в способе, чтобы можно было подать пар в процесс.

Также уровень выпускного давления турбины с противодавлением не обязательно должен быть равным уровню регулярного среднего давления пара в установке, но может находиться между уровнем высокого давления пара и уровнем среднего давления пара. Благодаря этому получаемый синтез-газ более высокого давления может подаваться вместе с паром экономически эффективным образом без влияния на уровень регулярного среднего давления пара для других турбин.

Описываемый способ использования тепла синтез-газа для получения сверхкритического пара в низкоэнергетической установке получения аммиака или метанола должен работать в аппаратном оформлении, включающем стадию риформинга или частичного окисления, по меньшей мере один генератор сверхкритического пара, по меньшей мере один перегреватель для сверхкритического пара, устройство для измерения температуры ниже по потоку от генератора сверхкритического пара, по меньшей мере одну турбину с противодавлением, по меньшей мере одну турбину для извлечения и конденсации, по меньшей мере один насос для подачи питающей воды в котел, средство для переноса подаваемый воды под давлением в генератор сверхкритического пара, средство для регулировки потока подаваемой воды, чтобы удерживать постоянной температуру сверхкритического пара на выходе из генератора сверхкритического пара, средство для переноса сверхкритического пара, получаемого в генераторе сверхкритического пара, в перегреватель и средство для переноса перегретого пара в турбину с противодавлением.

Другая возможность установки заключается в том, что генератор сверхкритического пара сконструирован с вертикальным пучком трубопроводов.

Еще одна возможность установки заключается в том, что она дополнительно включает в себя средство для соединения устройства для измерения температуры с насосом с управляемой скоростью для подачи питающей воды.

Еще одна возможность установки заключается в том, что она включает в себя перегреватель выше по потоку от турбины с противодавлением, который расположен в конвекционной секции первого риформера или, как альтернатива, в топочном нагревателе.

Альтернативная возможность установки заключается в том, что она включает в себя перегреватель, расположенный выше по потоку от турбины для извлечения и конденсации, который сконструирован как конвекционная секция риформера или как змеевик топочного нагревателя.

Альтернативная возможность установки заключается в том, что она дополнительно включает в себя средство для объединения насыщенного пара высокого давления, выходящего из парового котла в секции синтеза, с паром из турбины с противодавлением и переноса объединенного потока в общий перегреватель.

Еще одна возможность установки заключается в том, что она включает в себя средство для объединения потока пара от турбины с противодавлением и потока, отведенного от турбины для извлечения и конденсации.

Другая возможность установки заключается в том, что она включает в себя генератор сверхкритического пара в линии синтез-газа, который находится на стороне подачи пара, а также на стороне синтез-газа, за которой расположен генератор сверхкритического пара.

Еще одна возможность установки заключается в том, что она включает в себя конвертер для отводимого высокотемпературного СО, который расположен между генератором сверхкритического пара и перегревателем сверхкритического пара в линии синтез-газа.

Далее изобретение описывается более подробно на приведенном примере и иллюстрируется 4 фигурами, подводящими итог приведенному описанию. На фигурах 1-4 показаны блок-схемы, показывающие примерные различные варианты применения описываемого способа использования тепла синтез-газа для получения сверхкритического пара в низкоэнергетической установке получения аммиака или метанола.

Блок-схема на Фиг.1 показывает стадию (1) риформинга или частичного окисления, в котором получают синтез-газ. Эта стадия выбирается из группы, включающей в себя первый риформер, комбинацию первого и второго риформеров, нагреваемый газом риформер, автотермальный риформер, камеру частичного окисления, мембранный реактор с мембранами для переноса кислорода, камеру каталитического частичного окисления и их сочетания. Полученный синтез-газ (2) переносится в рубашку генератора (3) сверхкритического пара. Поток (4) подаваемый воды предварительно нагревается (5, 6) и подвергается сжатию (7, 8) перед его поступлением в генератор (3) сверхкритического пара. Газ (9), выходящий из генератора сверхкритического пара, подвергается дальнейшей обработке в одной или больше установок (10, 11) для отвода СО. Тем самым, нагревание предварительных нагревателей (5,6) достигается посредством использования выбрасываемого тепла (12, 30) из реакторов (10, 11) для отвода СО. Полученный сверхкритический пар (13) подается в перегреватель (14), который расположен в конвекционной секции первого риформера или в топочном нагревателе. Температура сверхкритического пара контролируется посредством прибора (15) для измерения температуры, который соединен с насосом (7) с управляемой скоростью подачи питающей воды для регулирования потока (4) питающей воды в генератор (3) сверхкритического пара, чтобы поддерживать температуру сверхкритического пара на постоянном уровне. Еще более нагретый сверхкритический пар (16) из перегревателя (14) подается в турбину (17) с противодавлением. Расширившийся пар (18) из турбины (17) с противодавлением смешивается с насыщенным паром (19) высокого давления, полученным в паровом котле (20) в секции синтеза аммиака или метанола, и еще больше перегревается в перегревателе (21). Этот перегреватель (21) может быть сконструирован как конвекционная секция риформера или змеевик топочного нагревателя. Перегретый пар (22) затем подается в турбину (23) для экстракции и конденсации.

Изобретение позволяет многообразно использовать способ. Например, соединение (24) может служить для контроля температуры сверхкритического пара посредством автоматического регулирования потока (4) подаваемой воды в генератор (3) сверхкритического пара, но оно также может быть исключено, и поток подаваемой воды регулируется другими средствами. Также имеется возможность разделить поток подаваемой воды на две части. Часть 1 подается в секцию синтеза и часть 2 потока (4) используется для питания генератора сверхкритического пара исходной водой, которая может быть еще больше сжата в (7) и предварительно нагрета в (5) перед поступлением в генератор (3) сверхкритического пара.

На Фиг.1 показана конфигурация способа, в которой насыщенный пар (19) высокого давления, выходящий из парового котла (20) в секции синтеза, объединяется с паром (18), полученным в турбине (17) с противодавлением, и объединенный поток подается в общий перегреватель (21). В зависимости от доступного тепла в конвекционной секции первого риформера, способ может также быть сконфигурирован таким образом, чтобы только один из потоков (18) и (19) перегревался в конвекционном змеевике риформера, а другой поток перегревался в змеевике топочного нагревателя, и оба потока затем объединялись, после того как они были перегреты по отдельности.

На Фиг.2 показан вариант этого способа, где насыщенный пар (19) высокого давления, выходящий из парового котла в секции (20) синтеза, нагревается в перегревателе (21) и подается в турбину (23) экстракции и конденсации. Сверхкритический пар (16) подается в турбину (17) с противодавлением, где он расширяется. Пар, выпускаемый из турбины (27) с противодавлением, и пар (28), отводимый из турбины экстракции и конденсации, объединяются в (29) для дальнейшего использования.

На Фиг.3 показан дополнительный вариант способов, описанных на Фиг.1 и 2. Способ, описанный на Фиг.3, аналогичен способу, описанному на Фиг.2, до момента, когда происходит объединение полученных потоков от турбины (27) с противодавлением и от турбины (28) для экстракции и конденсации. В варианте способа, показанном на Фиг.3, эти два потока (27, 28) остаются раздельными. Отсоединение уровня противодавления (27) от регулярного среднего уровня (29) давления пара позволяет создать другое рабочее давление пара на стадии (1) риформинга и частичного окисления, например, для риформинга пара высокого давления или для автотермального риформинга пара высокого давления. Тем самым, сохраняется высокая эффективность турбины (23) для экстракции и конденсации и других турбин, работающих на уровне (29) среднего давления пара, несмотря на более высокое давление пара в способе.

Варианты способа, показанные на Фиг.1-3, представляют собой концепции установок, которые конструируются для максимального получения энергии. Эти установки не сбалансированы в отношении своих собственных энергетических потребностей, т.е. будут иметь значительное производство пара. Это не всегда желательно, так как имеется много мест, где нельзя найти подходящих потребителей пара в окрестности. В таких случаях сбалансированная установка является предпочтительным решением. Такой подход обеспечивается вариантом изобретения, показанным на Фиг.4. Полученный синтез-газ (2) снова подается в генератор (3) сверхкритического пара. Поток (4) сверхкритической подаваемой воды прямо идет от насоса (7) для сверхкритической питающей воды. Сверхкритический пар (31), полученный в (3), теперь подается в дополнительный перегреватель (32) в линии (33) синтез-газа, где осуществляется часть перегревания. Выпускаемый поток (13) затем поступает в обычный перегреватель (14) для его окончательного кондиционирования. Таким образом, количество тепла, требующееся для перегревателя (14), значительно сокращается. Синтез-газ (33), выходящий из генератора 1 (3) сверхкритического пара, поступает в перегреватель (32). Возможно, но не обязательно, нахождение конвертера (10) для отводимого высокотемпературного СО в линии (33). Стадия конверсии в этом месте значительно снижает содержание СО в синтез-газе, тем самым уменьшая, соответственно, агрессивность коррозии из-за распыления металла. Это обеспечивает более высокие температуры металла в перегревателе (32) и более высокую температуру предварительного нагревания для сверхкритического пара (13). Вариант способа, показанный на Фиг.4, может быть объединен с вариантами, показанными на Фиг.1-3, что таким образом обеспечивает полную гибкость для регулирования парового цикла в соответствии с требованиями процесса и доступными источниками тепла.

Следующие примеры иллюстрируют потенциал изобретенного способа в отношении снижений производственных затрат.

Пример 1

В этом примере сравниваются следующие реализации паровых систем в установках получения аммиака и метанола:

S1 Стандартная паровая система высокого давления с турбинами для экстракции и конденсации
А1 Воплощение изобретения в соответствии с Фиг.1
В1 Воплощение изобретения в соответствии с Фиг.2

Их сравнение основано на суммарной выходной мощности 60 МВт для всех турбин. Эта величина является установочной в настоящее время для современных установок получения аммиака и метанола во всем мире. Также предполагается, что скорость потока пара составляет 120 тонн/час при 45 барах и 430°С для стадии риформинга при паровом способе. В расчетах использовались эффективности турбин в 80%.

В таблице 1 показаны данные способа, используемые в этом сравнении, а также результаты сравнения. Таблица показывает заметную разницу в требующемся количестве вводимого тепла для общепринятой паровой системы и для предложенного нового варианта способа при использовании системы сверхкритического пара. В таблице также перечислены полученные различия в годовых производственных затратах, основанных на стоимости энергии 4 евро за один ГДж.

Пример 2

В этом примере сравниваются аналогичные реализации паровой системы в установках получения аммиака и метанола, как в примере 1:

S2 Стандартная паровая система высокого давления с турбинами для экстракции и конденсации
А2 Воплощение изобретения в соответствии с Фиг.1
С1 Воплощение изобретения в соответствии с Фиг.3

В этом случае предполагалось, что используется другая стадия риформинга, работающая при более высоком давлении, и пар в способе подавался под давлением 70 бар. Все другие данные остаются такими же, как и в примере 1.

Преимуществами предложенного способа являются:

Более высокая энергетическая эффективность способа за счет применения системы со сверхкритическим паром.

Экономическая эффективность заключается в замене трех дорогих типов оборудования, включая паровой барабан, котел с паром высокого давления со стороны рубашки и нагреваемый газом перегреватель, одним котлом со сверхкритическим паром, имеющим газ низкого давления со стороны рубашки по настоящему способу.

Экономия поверхности парового конденсатора и расхода охлаждающей воды из-за более высокой тепловой эффективности системы со сверхкритическим паром.

Могут быть устранены проблемы коррозии из-за распыления металла, которые довольно часто встречаются в обычных перегревателях для пара.

Эффективное обеспечение способа паром для процессов риформинга высокого давления из-за размещения турбины с противодавлением между уровнем давления сверхкритического пара и уровнем давления пара в процессе.

Цифровые обозначения в фигурах:

1 Стадия риформинга или частичного окисления
2 Синтез-газ
3 Генератор сверхкритического пара
4 Поток 2 питающей воды
5 Предварительный нагреватель 1
6 Предварительный нагреватель 2
7 Насос 1 для воды, подаваемой в котел
8 Насос 2 для воды, подаваемой в котел
9 Газ, выходящий из генератора сверхкритического пара
10 Реактор 1 с отводом СО
11 Реактор 2 с отводом СО
12 Потерянное тепло от реактора 1 с отводом СО
13 Сверхкритический пар
14 Перегреватель
15 Устройство для контроля температуры
16 Еще более нагреваемый сверхкритический пар
17 Турбина с противодавлением
18 Расширенный пар от турбины с противодавлением
19 Пар высокого давления от секции синтеза метанола или аммиака
20 Секция синтеза
21 Перегреватель
22 Перегретый пар
23 Турбина для экстракции и конденсации
24 Соединение для связывания устройства для контроля температуры с насосом для подачи потока воды в котел
25 Поток подаваемой воды
26 Поток 1 подаваемой воды
27 Выходящий поток из турбины с противодавлением
28 Отводимый пар от турбины для экстракции и конденсации
29 Объединение газового потока 27 и газового потока 28
30 Потерянное тепло от реактора 2 с отводом СО
31 Сверхкритический пар
32 Перегреватель сверхкритического пара
33 Синтез-газ

1. Способ использования тепла синтез-газа для получения сверхкритического пара в низкоэнергетической установке для аммиака или метанола, включающий
стадию риформинга или частичного окисления,
по меньшей мере один генератор сверхкритического пара,
по меньшей мере один перегреватель,
по меньшей мере одну турбину с противодавлением,
по меньшей мере одну турбину для экстракции и конденсации,
по меньшей мере один насос для подачи питающей воды в котел,
где синтез-газ образуется на стадии риформинга или частичного окисления,
отличающийся тем, что
генератор сверхкритического пара имеет рубашечную сторону и трубчатую сторону, которая используется для извлечения тепла,
синтезируемый синтез-газ подается в рубашечную сторону генератора сверхкритического пара,
в генератор сверхкритического пара подается питающая вода под давлением,
поток питающей воды регулируется для поддержания температуры пара на выходе из генератора сверхкритического пара в диапазоне от 375 до 500°С,
сверхкритический пар получают в генераторе сверхкритического пара при давлении от 225 до 450 бар,
сверхкритический пар далее нагревается в перегревателе до температуры от 500 до 750°С и
сверхкритический пар, полученный в перегревателе, подается в турбину с противодавлением.

2. Способ по п.1, отличающийся тем, что стадия риформинга или частичного окисления, где получают синтез-газ, выбирается из группы, включающей в себя первый риформер, комбинацию первого и второго риформеров, риформер, нагреваемый газом, автотермальный риформер, камеру частичного окисления, мембранный реактор с мембранами для переноса кислорода, каталитическое частичное окисление или их комбинацию.

3. Способ по п.1 или 2, отличающийся тем, что входная температура со стороны генератора сверхкритического пара находится в диапазоне от 550 до 1100°С.

4. Способ по любому одному из пп.1 или 2, отличающийся тем, что температура сверхкритического пара, выходящего из генератора сверхкритического пара, поддерживается постоянной посредством управления скоростью насоса для подачи питающей воды.

5. Способ по любому одному из пп.1 или 2, отличающийся тем, что турбина с противодавлением является единственным драйвером для воздушного компрессора или для компрессора синтез-газа.

6. Способ по любому одному из пп.1 или 2, отличающийся тем, что сверхкритический пар снижают до уровня давления пара 100-130 бар в турбине с противодавлением.

7. Способ по любому одному из пп.1 или 2, отличающийся тем, что сверхкритический пар от турбины с противодавлением смешивается с насыщенным паром, полученным в паровом котле в секции синтеза аммиака или метанола, и затем дальше перегревается.

8. Способ по любому одному из пп.1 или 2, отличающийся тем, что пар, выходящий из турбины с противодавлением, подается в турбину для экстракции и конденсации после дальнейшего перегрева.

9. Способ по любому одному из пп.1 или 2, отличающийся тем, что уровень выходного давления турбины с противодавлением не зависит от уровня давления пара, определяемого его экстракцией из турбины для экстракции и конденсации.

10. Способ по любому одному из пп.1 или 2, отличающийся тем, что уровень выходного давления турбины с противодавлением находится между уровнем давления сверхкритического пара и уровнем давления пара.

11. Устройство для использования тепла синтез-газа для получения сверхкритического пара в установке для аммиака или метанола по п.1, включающее
стадию риформинга или частичного окисления,
по меньшей мере один генератор сверхкритического пара,
по меньшей мере один перегреватель для сверхкритического пара,
по меньшей мере одно устройство для измерения температуры, расположенное ниже по потоку от генератора сверхкритического пара,
по меньшей мере одну турбину с противодавлением,
по меньшей мере одну турбину для экстракции и конденсации,
по меньшей мере один насос для подачи питающей воды в котел,
средство для подачи синтезируемого синтез-газа в рубашечную сторону генератора сверхкритического пара,
средство для подачи питающей воды под давлением в генератор сверхкритического пара,
средство для регулирования потока питающей воды для поддержания постоянной температуры сверхкритического пара на выходе из генератора сверхкритического пара,
средство для переноса сверхкритического пара, полученного в генераторе сверхкритического пара, в перегреватель и
средство для переноса перегретого пара в турбину с противодавлением.

12. Устройство по п.11, включающее в себя генератор сверхкритического пара, который сконструирован с вертикальным пучком труб.

13. Устройство по любому одному из пп.11 или 12, включающее в себя средство для соединения устройства для измерения температуры с насосом с управляемой скоростью для подачи питающей воды.

14. Устройство по любому одному из пп.11 или 12, включающее в себя перегреватель выше по потоку от турбины с противодавлением, который расположен в конвекционной секции первого риформера.

15. Устройство по любому одному из пп.11 или 12, включающее в себя перегреватель выше по потоку от турбины с противодавлением, который расположен в топочном нагревателе.

16. Устройство по любому одному из пп.11 или 12, включающее в себя перегреватель, расположенный выше по потоку от турбины для экстракции и конденсации, который реализуется, как конвекционная секция риформера или змеевик топочного нагревателя.

17. Устройство по любому одному из пп.11 или 12, включающее в себя средство для объединения насыщенного пара, выходящего из парового котла в секции синтеза, с паром из турбины с противодавлением и для переноса объединенного потока в общий перегреватель.

18. Устройство по любому одному из пп.11 или 12, включающее в себя средство для объединения потока пара от турбины с противодавлением с паром, выведенным из турбины для экстракции и конденсации.

19. Устройство по любому одному из пп.11 или 12, отличающееся тем, что генератор сверхкритического пара в линии синтез-газа расположен на паровой стороне, а также на стороне синтез-газа, за которым следует перегреватель сверхкритического пара.

20. Устройство по любому одному из пп.11 или 12, отличающееся тем, что конвертер отводимого высокотемпературного СО расположен между генератором сверхкритического пара и перегревателем сверхкритического пара в линии синтез-газа.



 

Похожие патенты:

Изобретение относится к энергетике и может быть использовано для получения тепловой энергии:- автономно для подачи перегретого пара на промышленные и бытовые теплообменники, турбоустановки, турбогенераторы и другие потребители перегретого водяного пара;- в ядерных энергетических установках с реакторами типа ВВЭР как для непосредственного перегрева насыщенного пара, так и для смешения насыщенного пара с перегретым паром с целью повышения коэффициента полезного действия, увеличения мощности, сокращения расхода охлаждающей воды, понижение влажности пара перед последними ступенями турбин, что позволит заменить турбины влажного пара на турбины перегретого пара для атомных электрических станций и транспортных установок, например, судовых и корабельных с повышением коэффициента полезного действия, мощности, надежности и безопасности эксплуатации;- по мощности и своим весогабаритным характеристикам энергетическая установка может быть использована в транспортных энергоустановках железнодорожного типа;- при заводском блочном исполнении агрегатов установки она может доставляться на стройплощадку посредством: автомобильного транспорта, например трейлер с тягачом типа «Faun», воздушным транспортом транспортным самолетом типа «Руслан», экранопланом, водным транспортом речным и морским.

Изобретение относится к энергетике и может быть использовано при проектировании сепараторов-пароперегревателей турбоустановок атомных электростанций. .

Изобретение относится к энергетике и может быть использовано при проектировании сепараторов-пароперегревателей турбоустановок атомных электростанций. .

Изобретение относится к устройствам, предназначенным для перегрева водяного пара при организации рабочего процесса парогазовых и паротурбинных энергетических установок.

Изобретение относится к конструкции печей для бани и способу получения перегретого пара. .

Изобретение относится к конструкции печей и способу генерации перегретого пара. .

Изобретение относится к компрессорной установке, содержащей, по меньшей мере, одну газовую турбину (2), которая содержит газотурбинный компрессор, и паровую турбину (3), при этом согласованный с газовой турбиной (2) парогенератор (4) приводится в действие отработавшими газами газовой турбины (2), так что создаваемый в парогенераторе (4) пар приводит в действие паровую турбину (3).
Изобретение относится к области производства механической энергии в первичных тепловых двигателях роторного типа с газообразным рабочим телом, в которых повышение КПД осуществляется за счет регенерации тепла отработавших газов с использованием эндотермических процессов водно-парового преобразования углеводородного топлива.

Изобретение относится к теплоэнергетике, в частности к комбинированным тепловым установкам с кипящим слоем. .

Изобретение относится к паровым двигателям. .

Изобретение относится к области энергетики. .

Изобретение относится к способу получения жидкого углеводородного продукта (1), такого как биотопливо, из твердой биомассы (2). .
Наверх