Способ получения термостойких олигоорганосилоксановых смол

Изобретение относится к технологии получения олигоорганосилоксановых смол, используемых в производстве композиционных материалов различного назначения, в качестве пленкообразующего компонента лаков при создании защитных покрытий и для модификации органических лаков и смол. Предложен способ получения термостойких олигоорганосилоксановых смол формулы [PhSiO3/2]a[RnSiO1,5]b[Me2SiO]c, где Rn - Me, H, Vin, при n=1; a=0,5-0,97; b=0,03-0,5; c=0-0,47, поликонденсацией продуктов гидролиза исходных органоалкоксисиланов в активной среде, представляющей собой безводную карбоновую кислоту, под действием катализатора, в качестве которого используют серную кислоту, отличающийся тем, что смесь исходных органоалкоксисиланов, выбранных из ряда PhSi(OEt)3, RnSi(OEt)4-n, где Rn=Me, H, Vin, при n=1, предварительно подвергают частичному гидролизу при температуре 70°C, причем катализатор - серную кислоту берут в количестве 0,001-0,09% моль от суммы молей всех исходных органоалкоксисиланов, а для улучшения эластичности получаемого продукта в смесь исходных органоалкоксисиланов вводят не содержащий хлор циклосилоксан [Me2SiO]4. Технический результат - способ позволяет получать смолы с повышенной температурой деструкции. 2 табл., 8 пр.

 

Предлагаемое изобретение относится к технологии получения термостойких олигоорганосилоксановых смол, которые находят свое применение в производстве композиционных материалов различного назначения, используемых в ряде отраслей промышленности, а также в качестве пленкообразующего компонента лаков при создании защитных покрытий, в качестве модификаторов органических лаков и смол.

Известен способ получения органополисилоксанов с применением триацетилацетоната ванадия в качестве катализатора гидролизом трифункциональных органических силанов, таких как метилтриалкоксисилан, фенилтриалкоксисилан, или их смесей в нейтральной среде (пат. США №3457224, 1969 г., МПК C08G 31/16). Недостаток способа - необходимость применения дорогостоящего катализатора.

Известен способ получения функциональных полиорганосилоксанов и композиций на их основе реакцией поликонденсации смеси алкоксисиланов в активной среде в присутствии катализатора, содержащего соединения с хлорсилильной или хлорангидридной функциональной группой, в количестве от 0,01 до 0,5 мас.% в расчете на реакционную смесь (заявка РФ №2006113774, МПК C08G 77/04 и заявка РФ №2007115199, МПК C08G 77/04). К недостаткам способа относится невозможность получения олигоорганосилоксанов, обладающих термостабильностью при повышенных температурах.

Предложен способ получения полиорганосилоксанов поликонденсацией органоалкоксисиланов в активной среде, представляющей собой безводную карбоновую кислоту или смесь безводной карбоновой кислоты и органического растворителя (заявка РФ №2006113775, МПК C08G 77/06). Указанное изобретение выбрано нами за прототип из-за применения одинаковых реагентов и активной среды в процессе получения целевых продуктов.

Задача предлагаемого изобретения - разработать способ получения олигоорганосилоксановых смол с повышенной температурой деструкции.

Поставленная задача решена тем, что разработан способ получения термостойких олигоорганосилоксановых смол формулы:

[PhSiO3/2]a[RnSiO1,5]b[Me2SiO]c,

где Rn - Me, H, Vin, n=1; a=0,5-0,97; b=0,03-0,5; c=0-0,47, поликонденсацией продуктов гидролиза в активной среде, представляющей собой безводную карбоновую кислоту, под действием катализатора, в качестве которого используют серную кислоту, отличающийся тем, что смесь исходных органоалкоксисиланов, выбранных из ряда PhSi(OEt)3, RnSi(OEt)4-n, где Rn=Me, H, Vin, при n=1, предварительно подвергают частичному гидролизу при температуре 70°C, причем катализатор - серную кислоту берут в количестве 0,001-0,09% моль от суммы молей всех исходных органоалкоксисиланов, а для улучшения эластичности получаемого продукта в смесь исходных органоалкоксисиланов вводят не содержащий хлор циклосилоксан [Me2SiO]4.

Предлагаемое изобретение иллюстрируется нижеследующими примерами.

Пример 1

В реакционную колбу, снабженную обогревом с контролем температуры, мешалкой, обратным холодильником и капельной воронкой, загружают 151,6 г (0,632 моль) фенилтриэтоксисилана (ФТЭОС), 112,4 г (0,632 моль) метилтриэтоксисилана (МТЭОС), 200 г толуола и 0,7 г (0,007 моль) серной кислоты. При постоянном перемешивании, после того как реакционная масса нагреется до 70°С, к ней добавляют 22,7 г (1,264 моль) воды и проводят частичный гидролиз, после чего из капельной воронки прикапывают 240,0 г (4,0 моль) уксусной кислоты. После ввода всей уксусной кислоты реакционную массу нагревают до температуры кипения и выдерживают при кипении в течение 3,5 часов до образования конечного продукта. Затем отгоняют полученный этилацетат и проводят нейтрализацию реакционной массы водой до нейтральной реакции. Далее ведут отгонку растворителя до содержания летучих продуктов не более 3 мас.%.

Получают 118,0 г 97% раствора смолы, что в пересчете на сухую смолу составляет 96% от теоретически рассчитанного. Полученная смола содержит 1,6 мас.% -ОН групп и 0,55 мас.% -OC2H5 групп при кремнии. Состав смолы, рассчитанный на основании взятых в реакцию компонентов, может быть представлен как: [C6H5SiO1,5]0,5[CH3SiO1,5]0,5

Пример 2

В колбу, снабженную обогревом с контролем температуры, мешалкой, обратным холодильником, загружают 91,9 г (0,383 моль) фенилтриэтоксисилана (ФТЭОС), 28,1 г (0,158 моль) метилтриэтоксисилана (МТЭОС), 200 г толуола, 0,4 г (0,004 моль) серной кислоты. При постоянном перемешивании, после того как реакционная масса нагреется до 70°C, добавляют 9,0 г (0,5 моль) воды и проводят частичный гидролиз, после чего из капельной воронки прикапывают 94,7 г (1,57 моль) уксусной кислоты. После ввода всей уксусной кислоты реакционную массу нагревают до температуры кипения и выдерживают при кипении в течение 3,5 часов до образования конечного продукта. Затем отгоняют полученный этилацетат и проводят нейтрализацию реакционной массы водой до нейтральной реакции. Далее ведут отгонку растворителя до содержания летучих продуктов не более 3 мас.%.

Получают 57,6 г 97% раствора смолы, что в пересчете на сухую смолу составляет 96% от теоретически рассчитанного. Полученная смола содержит 3,2 мас.% ОН- групп и 0,08 мас.% OC2H5- групп при кремнии. Состав смолы, рассчитанный на основании взятых в реакцию компонентов, может быть представлен как: [C6H5SiO1,5]0,71[CH3SiO1,5]0,29.

Пример 3

В колбу, снабженную обогревом с контролем температуры, мешалкой, обратным холодильником, загружают 111,1 г (0,463 моль) фенилтриэтоксисилана (ФТЭОС), 28,1 г (0,158 моль) метилтриэтоксисилана (МТЭОС), 200 г толуола, 0,5 г (0,005 моль) серной кислоты. При постоянном перемешивании, после того как реакционная масса нагреется до 70°C, добавляют 11,1 г (0,6 моль) воды и проводят частичный гидролиз, после чего из капельной воронки прикапывают 93,5 г (1,55 моль) уксусной кислоты. После ввода всей уксусной кислоты реакционную массу нагревают до температуры кипения и выдерживают при кипении в течение 3,5 часов до образования конечного продукта. Затем отгоняют полученный этилацетат и проводят нейтрализацию реакционной массы водой до нейтральной реакции. Далее ведут отгонку растворителя до содержания летучих продуктов не более 3 мас.%.

Получают 66,1 г 97% раствора смолы, что в пересчете на сухую смолу составляет 94% от теоретически рассчитанного. Полученная смола содержит 3,1 мас.% OH- групп и 0,35 мас.% OC2H5- групп при кремнии. Состав смолы, рассчитанный на основании взятых в реакцию компонентов, может быть представлен как: [C6H5SiO1,5]0,75[CH3SiO1,5]0,25.

Пример 4

В колбу, снабженную обогревом с контролем температуры, мешалкой, обратным холодильником, загружают 104,4 г (0,435 моль) фенилтриэтоксисилана (ФТЭОС), 12,1 г (0,065 моль) винилтриэтоксисилана (ВТЭОС), 200 г толуола, 0,5 г (0,005 моль) серной кислоты. При постоянном перемешивании, после того как реакционная масса нагреется до 70°C, добавляют 8,2 г (0,4 моль) воды и проводят частичный гидролиз, после чего из капельной воронки прикапывают 92,7 г (1,5 моль) уксусной кислоты. После всего ввода уксусной кислоты реакционную массу нагревают до температуры кипения и выдерживают при кипении в течение 3,5 часов до образования конечного продукта. Затем отгоняют полученный этилацетат и проводят нейтрализацию реакционной массы водой до нейтральной реакции. Далее ведут отгонку растворителя до содержания летучих продуктов не более 3 мас.%.

Получают 58,8 г 97% раствора смолы, что в пересчете на сухую смолу составляет 94% от теоретически рассчитанного. Полученная смола содержит 3,8 мас.% OH- групп и 0,32 мас.% OC2H5- групп при кремнии. Состав смолы, рассчитанный на основании взятых в реакцию компонентов, может быть представлен как: [C6H5SiO1,5]0,87[CH2CHSiO]0,13.

Пример 5

В колбу, снабженную обогревом с контролем температуры, мешалкой, обратным холодильником, загружают 240,0 г (1,0 моль) фенилтриэтоксисилана (ФТЭОС), 16,0 г (0,09 моль) метилтриэтоксисилана (МТЭОС), 65,2 г (0,22 моль) октаметилциклотетрасилоксана, 200 г толуола, 0,9 г (0,009 моль) серной кислоты. При постоянном перемешивании, после того как реакционная масса нагреется до 70°C, добавляют 19,6 г (1,08 моль) воды и проводят частичный гидролиз, после чего из капельной воронки прикапывают 196,7 г (3,27 моль) уксусной кислоты. После ввода всего количества уксусной кислоты реакционную массу нагревают до температуры кипения и выдерживают при кипении в течение 3,5 часов до образования конечного продукта. Затем отгоняют полученный этилацетат и проводят нейтрализацию реакционной массы водой до нейтральной реакции. Далее ведут отгонку растворителя до содержания летучих продуктов не более 3 мас.%.

Получают 188,2 г 97% раствора смолы, что в пересчете на сухую смолу составляет 94% от теоретически рассчитанного. Полученная смола содержит 1,7 мас.% OH- групп и 0,85 мас.% OC2H5- групп при кремнии. Состав смолы, рассчитанный на основании взятых в реакцию компонентов, может быть представлен как: [C6H5SiO1,5]0,76[CH3SiO1,5]0,07[Me2SiO]0,17.

Аналогично примерам 1, 2, 3, 4, 5 были получены остальные смолы (примеры 6, 7, 8), представленные в таблице 1.

Соотношения исходных реагентов, используемых в синтезе, приведены в табл.1.

Характеристики полученных полиорганосилоксановых смол приведены в таблице 2.

Таблица 1.
Состав исходных образующихся побочных продуктов, выход продукта, функциональный состав смолы, срок хранения
№ п/п Состав исходной смеси, г (м) Кол-во толуо-
ла, г
Кол-во уксусной кислоты, г (моль) Количество образующихся побочных продуктов, г Выход продута, в пересчете на сухую смолу, % Содержание -OH и -OC2H5 групп в смоле Срок хранения смол в растворе 80% концентрации
этилацетат OH OC2H5
1 2 3 4 5 6 7 8 9
1 ФТЭОС - 151,6 (0,632) 200 240 (4,0) 360,2 95-96 1,6 0,55 6 месяцев
МТЭОС - 112,4 (0,632)
Серная кислота - 0,7
Вода дист. - 22,7
2 ФТЭОС - 91,9 (0,383) 200 94,7 (1,57) 154,1 95-96 3,2 0,08 6 месяцев
МТЭОС - 28,1 (0,158)
Серная кислота - 0,4
Вода дист. - 9,0
3 ФТЭОС - 111,1 (0,463) 200 93,5 (1,55) 176,9 93-94 3,1 0,35 6 месяцев
МТЭОС - 28,1 (0,158)
Серная кислота - 0,5
Вода дист. - 11,1
4 ФТЭОС - 104,4 (0,435) 200 92,7 (1,54) 131,1 93-94 3,8 0,32 6 месяцев
Винилтриэтоксисилан - 12,1 (0,065)
Серная кислота - 0,5
Вода дист. - 8,2
5 ФТЭОС - 240 (1,0) 200 196 (3,27) 310,6 95-96 1,7 0,85 6 месяцев
МТЭОС - 16,0 (0,09)
Октаметилциклотетрасилоксан - 65,2 (0,22)
Серная кислота - 0,9
Вода дист. - 19,6
6 ФТЭОС - 208,8 (0,87) 200 159,3 (2,65) 259,9 95-96 4,5 0,79 6 месяцев
МТЭОС - 7,47 (0,042)
Серная кислота - 0,7
Вода дист. - 16,4
7 ФТЭОС - 116,4 (0,485) 200 60 (1,0) 142,5 95-96 4,5 0.40 6 месяцев
МТЭОС - 2,67 (0,015)
Серная кислота - 0,5
Вода дист. - 9
8 ФТЭОС - 104,4 (0,435) 200 168 (2,8) 131,1 95-96 5,7 1,18 6 месяцев
МТЭОС - 4,5 (0,0253)
Триэтоксисилан - 65,6 (0,4)
Серная кислота - 0,5
Вода дист. - 8,2
Таблица 2.
Характеристики полученных олигоорганосилоксанов
№ опыта Соотношение ФТЭОС/МТЭОС (ВТЭОС): расчетное Длительность выдержки, ч T, °C Содержание функциональных групп, моль T начала деструкции, °C Выход неорганического остатка после термообработки 1000°C
-OH C2H5O-
прототип от 1:10 до 10:1 5-6 от 20 до темп-ры кипения 4,5 1,0 420 -
1 1,0:1,0 3,5 75 1,6 0,55 500 76
2 2,4:1,0 3,5 75 3,2 0,08 500 79
3 2,9:1,0 3,5 75 3,1 0,35 500 77
*4 17,1:1,0 3,5 75 3,8 0,32 500 86
**5 11,1:1,0 3,5 75 1,7 0,85 510 81
6 20,7:1,0 3,5 75 4,5 0,79 510 70
7 32,3:1,0 3,5 75 5,7 1,18 510 83
***8 17,1:1,0 3,5 75 1,7 0,85 500 52
* В составе 4-го соединения имеются Vin-заместители.
Соотношение ФТЭОС: VinТЭОС=17,1:2,6.
** В состав 5-го соединения входит октаметилциклотетрасилоксан.
Соотношение ФТЭОС:МТЭОС: D4=11,1:1,0:24,2.
*** В составе 8-го соединения имеются H-заместители.
Соотношение ФТЭОС:МТЭОС:ТЭОС = 17,1:1,0:15,8 (в соответствии с условиями проведения синтеза по п.п.4, 5, 8 таблицы 1).

Состав полученных олигоорганосилоксанов подтвержден данными спектроскопии ЯМР 1H. Содержание этоксильных групп определяли по методике (ГОСТ 20841.5-75) и по спектрам ПМР по отношению интегральных интенсивностей сигналов метильных групп в этоксильной группе и при кремнии. Спектры ЯМР 1H регистрировали на приборе Bruker АМ-360 с рабочей частотой ядер 1H 360 МГц при T=303К для образцов, содержащих 5±1% исследуемого вещества в дейтероацетоне. Химические сдвиги приведены относительно сигнала дейтероацетона.

Термогравиметрический анализ проводили на приборе DERIVA-TOGRAPH-C в атмосфере аргона при скорости нагревания 5 К/мин.

Способ получения термостойких олигоорганосилоксановых смол формулы
[PhSiO3/2]a[RnSiO1,5]b[Me2SiO]c,
где Rn - Me, H, Vin, при n=1; a=0,5-0,97; b=0,03-0,5; c=0-0,47 поликонденсацией продуктов гидролиза исходных органоалкоксисиланов в активной среде, представляющей собой безводную карбоновую кислоту, под действием катализатора, в качестве которого используют серную кислоту, отличающийся тем, что смесь исходных органоалкоксисиланов, выбранных из ряда PhSi(OEt)3, RnSi(OEt)4-n, где Rn - Me, H, Vin, при n=1 предварительно подвергают частичному гидролизу при температуре 70°C, причем катализатор - серную кислоту берут в количестве 0,001-0,09 мол.% от суммы молей всех исходных органоалкоксисиланов, а для улучшения эластичности получаемого продукта в смесь исходных органоалкоксисиланов вводят не содержащий хлор циклосилоксан [Me2SiO]4.



 

Похожие патенты:
Изобретение относится к способам получения полиорганосилоксанов. .
Изобретение относится к технологии получения фторсодержащих полиорганосилоксановых полимеров. .
Изобретение относится к химии и технологии получения полиметаллосилоксанов с заданным соотношением Si:М, где М - Ti или Zr. .
Изобретение относится к области кремнийорганических эластомеров, в частности - к процессу получения модифицированных высокомолекулярных силоксановых каучуков с повышенной термо- и морозостойкостью.

Изобретение относится к технологии получения низкомолекулярных фторорганосилоксановых полимеров. .

Изобретение относится к способам получения кремнийорганических блоксополимеров, содержащих фенилсилсесквиоксановые и диорганосилоксановые блоки. .

Изобретение относится к термостойким полиорганосилоксанам. .
Изобретение относится к способу получения материала покрытия

Изобретение относится к способам получения олигодиорганосилоксанов, используемых в качестве рабочих жидкостей паромасляных вакуумных насосов для создания умеренного и сверхглубокого вакуума; в качестве рабочих тел капельных холодильников-излучателей бескаркасных систем отвода низкопотенциального тепла космических ядерных энергетических установок

Изобретение относится к области силоксановых каучуков, модифицированных дифенильными звеньями, обладающих повышенными термо- и морозостойкими свойствами

Изобретение относится к нетоксичному полисилоксановому материалу. Предложен биорассасывающийся полисилоксановый (ПСН)-материал для получения волокон, получаемый (а) первой реакцией гидролиза-конденсации (РГК) максимум одного остатка одного или нескольких различных Si-соединений формулы SiX4, в которой остатки Х являются одинаковыми или различными, проводимой при катализе кислыми агентами и при начальном значении рН от 0 до ≤7 в присутствии водорастворимого растворителя 1-192 ч при температуре 0-80°С, (b) второй РГК материала, полученного на стадии (а), проводимой при одновременном удалении растворителя за счет испарения в закрытом перемешивающем аппарате при непрерывной подаче химически инертного потока газа-носителя в вакууме 1-1013 мбар при температуре 30-90°С до вязкости 0,5-2 Па·с. На стадии (с) ПСН-материал охлаждают в закрытом аппарате до температуры -20 - +10°С, в течение 2 мин - 5 ч, и затем (d) ПСН-материал, полученный на стадии (с), путем третьей РГК переводят в созревший полисилоксановый материал (сПСН)-материал при температуре -20 - +10°С в течение от 1 дня до 8 недель, при этом стадию (d) осуществляют непосредственно после стадии (с). Технический результат - получаемый сПСН-материал пригоден для изготовления нетканого материала с улучшенной биологической переносимостью. 13 з.п. ф-лы, 2 пр.

Изобретение относится к новому кизельзоль-материалу по меньшей мере с одним терапевтически активным веществом для получения биологически разлагаемых и впитываемых кизельгель-материалов. Предложен кизельзоль-материал по меньшей мере с одним терапевтически активным веществом, полученный реакцией гидролиза-конденсации тетраэтоксисилана, катализируемой кислотами при начальном значении рН от 0 до ≤7 в присутствии водорастворимого растворителя в течение по меньшей мере 16 часов при температуре 0-80°С; последующим упариванием с получением однофазного раствора; охлаждением полученного раствора с последующим созреванием при температуре 2-4°С с образованием гомогенного однофазного золя. Добавление локального анестетика проводят на одной из описанных стадий. Предложены также варианты применения указанного кизельзоль-материала и получаемые из него биологически впитываемый или биоактивный порошок, монолит или покрытие и биологически разлагаемый или биологически впитываемый волокнистый материал. Технический результат - возможность получения кизельзоль-материалов с улучшенной биологической переносимостью и способностью к заживлению ран. 5 н. и 16 з.п. ф-лы, 4 ил., 2 табл., 5 пр.

Изобретение относится к технологии получения олигоорганосилоксанов. Предложен способ получения олигодиметилсилоксанов перегруппировкой диметилциклосилоксанов и/или гидролизата диметилдихлорсилана в присутствии гексаметилдисилоксана и катализатора - сульфированного сополимера стирола и дивинилбензола с содержанием последнего от 25 до 50% масс., заключающийся в том, что на начальной стадии процесса проводят активацию катализатора путем введения в реакционную смесь полиметилсилоксановой (ПМС) жидкости с вязкостью 10-50 сСт, причем активацию и получение олигодиметилсилоксанов ведут в токе инертного газа с удельным расходом 0,2 м3/ч на 1 кг катализатора в режиме псевдоожижения при температуре 70-90°C. Технический результат - повышение производительности способа за счет сокращения времени индукционного эффекта в результате проведения активации катализатора и улучшение качества получаемых олигодиметилсилоксанов за счет снижения коэффициента полидисперсности. 2 з.п. ф-лы, 2 ил., 4 пр.

Изобретение относится к новому соединению полисилоксана с пятичленным циклическим карбонатом и способу его получения. Предложено соединение полисилоксана с пятичленным циклическим карбонатом формулы (1), где А означает или , где R1 обозначает алкиленовую группу, которая содержит от 1 до 12 атомов углерода и может быть присоединена через элемент О и/или -(C2H4O)b-, R2 обозначает прямую связь или алкиленовую группу, которая содержит от 2 до 20 атомов углерода, при этом, когда R2 представляет собой прямую связь, углерод алкиленовой группы R1 или углерод группы -(C2H4O)b- связан непосредственно с Si, связанным с R2 в формуле (1), b обозначает число от 1 до 300, а обозначает число от 8,2 до 9,2, предложен также способ получения указанного соединения. Технический результат - предложенное соединение позволяет получить полигидроксиполиуретановые смолы с улучшенными эксплуатационными характеристиками. 2 н.п. ф-лы, 3 ил., 1 табл., 8 пр.

Изобретение относится к химии и технологии получения поли(органо)(алкокси)(гидрокси)силоксанов с заданными степенями поликонденсации (n<1). Предложен способ получения поли(органо)(алкокси)(гидрокси)силоксанов с заданными степенями поликонденсации (n<1) ацидогидролитической поликонденсацией соответствующих алкокси(органо)силанов, причем мольное количество (x) карбоновой кислоты для синтеза поли(органо)алкоксисилоксана с определенным значением n<1 и полностью конденсированного полиорганосилоксана (n=1) из индивидуального алкокси(органо)силана и/или смеси мономеров с одинаковой функциональностью вычисляют по уравнению (1) x = n ⋅ f ⋅ y / 2,                                                    ( 1 ) где f - функциональность и y - мольное количество алкокси(органо)силана, для смеси разнофункциональных алкокси(органо)силанов по уравнению (2) x = n ⋅ Σ f i ⋅ y i / 2,                                                     ( 2 ) где fi - функциональность и yi - мольное количество отдельных алкокси(органо)силанов, при этом для синтеза полиорганогидроксисилоксана с заданным значением n<1 из индивидуального алкокси(органо)силана и/или смеси мономеров с одинаковой функциональностью мольное количество (x) карбоновой кислоты вычисляют по уравнению (3) x = f ⋅ y ( 2 − n ) / 2,                                                      ( 3 ) для смеси разнофункциональных алкокси(органо)силанов по уравнению (4) x = ( 2 − n ) ⋅ Σ f i ⋅ y i / 2.                                                       ( 4 ) а при использовании воды или водного спирта в качестве активатора реакции АГПК для всех полиорганосилоксанов загрузку карбоновой кислоты уменьшают на количество (моль) взятой воды или воды в спирте с учетом количества воды в составе минеральной кислоты. Технический результат - предложенный способ позволяет получать поли(органо)(алкокси)(гидрокси)силоксаны с заданными степенями поликонденсации с высокими выходами. 6 пр.

Изобретение относится к области химической технологии азотсодержащих соединений кремния. Предложен способ получения олигоборсилазанов взаимодействием олигосилазанов, не содержащих при атоме азота алкильных радикалов, с амминборановым комплексом, не содержащим при атоме азота алкильных радикалов, при соотношении силазана к борсодержащему модификатору от 3 до 18, при этом процесс ведут при температуре 40-140°C в смеси толуола с диглимом или бензола с диэтиловым эфиром при молярном соотношении от 1:1 до 1:33. Технический результат: способ позволяет получить с высоким выходом олигоборсилазаны с заданной молекулярной массой, что достигается с помощью ступенчатой термообработкой реакционной смеси при повышенной температуре в интервале 40-80°C при замещении одной группы и в интервале 90-140° при замещении остальных атомов водорода у атома бора. 1 з.п. ф-лы, 4 табл., 13 пр.
Изобретение относится к области элементоорганических высокофункциональных полимеров. Предложен способ получения высокофункциональных разветвленных полиэлементоорганосилоксанов путем гидролитической поликонденсации элементоорганических соединений RxE(OZ)v-x (где E=B, Si, Ti; R=H, алкил-, галоидалкил, арил-, винил; Z=H, алкил CnH2n+1 (n=1÷4), x=0÷ν, ν - валентность элемента E), отличающийся тем, что гидролитическую поликонденсацию проводят неравновесно без применения растворителя стехиометрическим количеством воды m=0,5÷2,0 г-моля на 1 г-моль соединений RxE(OZ)v-x до заданной конверсии функциональных групп OZ, определяющей молекулярную массу полимера, путем непрерывного удаления в вакууме при 50-80°C побочных продуктов ZOH. Технический результат - предложенный способ исключает необходимость использования растворителя, что удешевляет процесс и повышает его экологичность. 1 табл., 18 пр.
Наверх