Способ обнаружения появления объектов на изображениях

Изобретение относится к средствам автоматического обнаружения объектов на изображениях. Техническим результатом является повышение точности обнаружения объектов на изображениях. В способе из видеопоследовательности инициализируют соседние кадры, из полученных кадров вычитают постоянную составляющую, измеряют энергетический спектр данных кадров и представляют в виде матрицы предыдущего и матрицы текущего кадров, определяют характеристики предыдущего и текущего кадров, определяют разности отношений двух соседних кадров и сравнивают полученную разность с порогом, принимая решение о появлении объекта в текущем кадре изображения. 1 ил.

 

Изобретение относится к области телевизионно-вычислительной техники и может быть использовано для решения задачи автоматического обнаружения появления объектов на изображениях по видеопоследовательности в интеллектуальных системах технического зрения, видеонаблюдения и видеоконтроля, а также может использоваться в качестве подсистемы для систем более высокого уровня интерпретации, с помощью которых обнаруживаются движущиеся объекты и определяются их параметры.

Известен способ обнаружения движущихся транспортных средств, включающий получение кадров, вычисление разности между кадрами, бинаризацию по порогу, морфологические операции, вычисление оператора Собеля для определения границ объекта. В качестве фона фиксируют первый кадр, при каждом последующем кадре корректируют фон по формуле, определяют разность между текущим кадром и фоном, получают гистограмму яркостей по всему изображению (см. патент RU 2262661 С2, 19.05.2008 «Способ обнаружения движущихся транспортных средств»).

Недостатком данного способа является его вычислительная сложность, а также невозможность обнаружения появления новых стационарных объектов в зоне контроля видеокамеры.

Наиболее близкими по технической сущности к заявляемому способу является способ обнаружения объектов на изображении, который содержит этапы получения кадров, инициализации фонового кадра, инициализации порогового кадра. Далее для каждого из полученных кадров выполняют вычисление разности между текущим кадром и фоновым кадром, бинаризацию с пороговым кадром, пространственную фильтрацию, обеспечивающую обнаружение объектов, при этом корректировку фонового кадра осуществляют с помощью постоянной обновления фонового кадра, которую в свою очередь выбирают в каждом пикселе в зависимости от обнаружения в нем объекта по определенному правилу (см. патент RU 2395787 С2, 19.05.2008 «Способ обнаружения объектов»). Недостатком данного способа является наличие процедур пространственной фильтрации, корректировки фонового кадра и формирования зон предварительного обнаружения, т.е. его вычислительная сложность.

Техническим результатом предлагаемого способа являются повышение вероятности правильного обнаружения и уменьшение вычислительных затрат при обнаружении появления объектов на изображениях.

Указанный технический результат достигается тем, что в предлагаемом способе обнаружения появления объектов на изображениях из получаемой видеокамерой видеопоследовательности инициализируют соседние кадры - предыдущий и текущий в моменты времени tk и tk+1 соответственно, из полученных кадров вычитают постоянную составляющую (среднее значение яркости кадров), измеряют энергетический спектр данных кадров и представляют в виде Sпр-матрицы предыдущего и Sтек-матрицы текущего кадров, каждая размерностью q×q, где , Q - количество коэффициентов разложения энергетического спектра изображения в двумерный ряд Фурье по косинусам, определяют характеристики δ2 и δ3 как отношение главных миноров Sпр-матрицы предыдущего и Sтек-матрицы текущего кадров, определяют разности отношений соответствующих главных миноров для двух соседних кадров и сравнивают полученную разность с порогом, принимая решение об обнаружении появления объекта в текущем кадре изображения.

Сущность предлагаемого способа заключается в следующем:

- в формирователи S-матриц вводятся соседние кадры - предыдущего и текущего изображений в моменты времени tk и tk+1, где измеряют их энергетический спектр, например, по одному из способов, описанных в патентах RU 2373544 С1, 05.11.2008 «Способ измерения параметров энергетического спектра изображения» или RU 2370780 С1, 25.07.2008 «Способ измерения параметров энергетического спектра двумерного сигнала» и формируют Sпр-матрицу предыдущего и Sтек-матрицу текущего кадров, элементами которой являются коэффициенты разложения энергетического спектра изображения в двумерный ряд Фурье по косинусам (см. Богословский А.В., Жигулина И.В. Эффективность многомерной дискретной фильтрации // Радиотехника, 2008, №4.);

- определяются характеристики δ2 и δ3 для предыдущего и текущего кадров соответственно по формулам (1) и (2):

где S0,-1, S-1,0, S-1,-1 - элементы S-матриц предыдущего и текущего кадров соответственно;

- определяют значение величины порога по фоновым кадрам (в моменты времени t1 и t2), например, по правилу

где и - разница характеристик δ2 и δ3 для текущего и предыдущего кадров соответственно; порог может быть односторонний или двухсторонний;

- сигнализируют о появлении объекта в текущем кадре, если значения H2 или H3 превышают по абсолютной величине |H0|.

Способ может быть реализован, например, с помощью устройства, структурная схема которого, представлена на фигуре 1, где обозначены:

1 - видеокамера, предназначена для формирования изображения;

2-1 и 2-2 - формирователи S-матриц, предназначенные для измерения энергетического спектра изображений и формирования Sпр-матрицы предыдущего и Sтек-матрицы текущего кадров в моменты времени tk и tk+1 соответственно;

3-1 и 3-2 - блоки определения характеристик δ2 и δ3 в моменты времени tk и tk+1 соответственно;

4 - схема вычитания δ2 и δ3, предназначена для получения значений величин H2 и H3 для текущего и предыдущего кадров соответственно;

5 - блок пороговой обработки (схема сравнения H2 и H3 последующих кадров с |H0|);

6 - обнаружитель появления объектов, предназначен для сигнализации появления объектов на текущем кадре изображения, если значение H2 или H3 превышает по абсолютной величине |H0|.

Структурная схема обнаружения объектов на изображениях (фиг.1) функционирует следующим образом:

1) изображение реальной сцены поступает на блок 1 (видеокамеру), где формируется видеопоследовательность, кадры которой преобразуются в распределения яркости (происходит покадровая дискретизация сигнала);

2) первый кадр (предыдущий) видеопоследовательности в виде значений яркостей поступает с выхода 1 блока 1 на вход блока 2-1, где измеряется его энергетический спектр и формируется Sпр-матрица;

3) второй кадр (текущий) видеопоследовательности в виде значений яркостей поступает с выхода 2 блока 1 на вход блока 2-2, где измеряется его энергетический спектр и формируется Sтек-матрица;

4) далее измеренные значения Sпр-матрицы и Sтек-матрицы с выходов блоков 2-1 и 2-2 соответственно поступают на вход блоков 3-1 и 3-2, где происходит вычисление характеристик δ2 и δ3 для предыдущего и текущего кадров по формулам (1) и (2);

5) значения характеристик предыдущего и текущего кадров δ2 и δ3 с выходов блоков 3-1 и 3-2 поступают соответственно на 1 и 2 входы блока 4, где происходит их вычитание (определяются разницы характеристик и ) и находится значение величины порога Н0 по правилу (3);

6) далее значение величины порога H0 с выхода блока 4 поступает на блок 5, где происходит его запоминание и осуществляется его сравнение со значениями H2 и H3 последующих кадров видеопоследовательности;

7) если значения H2 или H3 последующих кадров превышают по абсолютной величине |H0|, то с выхода блока 5 на вход блока 6 подается управляющее воздействие и с выхода блока 6, являющегося выходом устройства, сигнализируется появление объекта в текущем кадре.

Применение данного способа обнаружения появления объектов на изображениях позволит повысить вероятность правильного обнаружения и уменьшить вычислительные затраты при решении задачи обнаружения объектов на изображениях.

Проведенный заявителями анализ уровня техники, включающий поиск по патентным и научно-техническим источникам информации и выявление источников, содержащих сведения об аналогах изобретения, позволил установить, что заявители не обнаружили аналогов, характеризующихся признаками, тождественными всем существенным признакам изобретения.

Следовательно, заявленное изобретение «Способ поиска и распознавания объектов на цифровых изображениях» соответствует критерию «новизна».

Способ обнаружения появления объектов на изображениях, основанный на измерении характеристик разности двух соседних кадров видеопоследовательности, сравнении с порогом и принятии решения о появлении объекта на изображении, отличающийся тем, что из получаемой видеокамерой видеопоследовательности, инициализируют соседние кадры - предыдущий и текущий в моменты времени tk и tk+1 соответственно, из полученных кадров вычитают постоянную составляющую (среднее значение яркости кадров), измеряют энергетический спектр данных кадров и представляют в виде Sпр-матрицы предыдущего и Sтек-матрицы текущего кадров, каждая размерностью q×q, где , Q - количество коэффициентов разложения энергетического спектра изображения в двумерный ряд Фурье по косинусам, определяют характеристики δ2 и δ3 как отношение главных миноров Sпр-матрицы предыдущего и Sтек-матрицы текущего кадров, определяют разности отношений соответствующих главных миноров для двух соседних кадров и сравнивают полученную разность с порогом, принимая решение об обнаружении появления объекта в текущем кадре изображения.



 

Похожие патенты:

Изобретение относится к устройству отображения для отображения изображений на жидкокристаллической (ЖК) панели, способному уменьшать размытость изображения, вызванную движением.

Изобретение относится к области телевизионно-вычислительной техники и может быть использовано при построении интеллектуальных систем технического зрения. .

Изобретение относится к области телевизионно-вычислительной техники. .

Изобретение относится к области телевизионных измерительных систем. .

Изобретение относится к масштабируемому видеокодированию, и в частности к способу получения данных движения для макроблока изображения высокого разрешения - макроблока верхнего слоя, из данных движения макроблоков изображения низкого разрешения - макроблока базового слоя.

Изобретение относится к области обработки движущихся изображений в устройстве получения изображений, в частности к оценке общего вектора перемещения изображения вследствие дрожания рук посредством использования информации масштабирования и информации фокуса.

Изобретение относится к системам видеокодирования и, в частности, к способу нахождения вектора движения, используемому при кодировании видеосигнала, который выполняет прогнозирование с компенсацией движения.

Изобретение относится к видеодисплеям с окружающей подсветкой, в котором характеристики окружающей подсветки адаптируются к движению элементов отображаемого контента.

Изобретение относится к видеокодированию и, в частности, может использоваться в цифровых кодирующих устройствах для видеотелефонии, видеоконференцсвязи, телевизионного цифрового вещания стандартной и высокой четкости.

Изобретение относится к устройству для получения параметров преобразования и использованию способа получения параметров векторного преобразования движения в системах сжатия видеоданных.

Изобретение относится к видеоанализу и к анализу и изучению поведения на основе данных потокового видео

Изобретение относится к медицинской технике и может быть использовано при биомеханических исследованиях, в спорте, в нейрофизиологических исследованиях для проведения ранней диагностики заболеваний различных функциональных систем человека, а также при оценке профессиональной пригодности

Изобретение относится к средствам обработки видеоданных

Изобретение относится к области видеокомпрессии, в частности к области поиска векторов перемещений блоков изображения и способу кодирования векторов перемещений

Изобретение относится к медицинской технике, а именно к ультразвуковым диагностическим системам. Система содержит ультразвуковой датчик для получения последовательности ультразвуковых изображений по мере перфузии контрастного вещества в ткань, блок вычисления параметра времени накопления контрастного вещества для опухоли и для нормальной ткани и блок вычисления отношения параметра времени накопления для опухоли и параметра времени накопления для нормальной ткани. Во втором варианте система содержит ультразвуковой датчик для получения последовательности ультразвуковых изображений линейно зависимых данных эхо-сигнала из опухоли и окружающей ее ткани по мере перфузии, блок вычисления кривой временной интенсивности контрастного вещества для линейно зависимых данных эхо-сигнала опухоли и для данных эхо-сигнала нормальной ткани и блок вычисления разностной кривой для линейно зависимых кривых временной интенсивности для опухоли и нормальной ткани. Использование изобретения позволяет исключить влияние изменений процедуры между сеансами контроля терапии. 2 н. и 12 з.п. ф-лы, 10 ил.

Изобретение относится к кодированию и декодированию и, в частности, к кодированию и декодированию остаточного блока. Способ кодирования остаточного блока включает в себя этапы, на которых генерируют блок предсказания для текущего блока; генерируют остаточный блок на основании разности между блоком предсказания и остаточным блоком; генерируют остаточный блок преобразования путем преобразования остаточного блока в частотную область; разделяют остаточный блок преобразования на элементы полосы частот; и кодируют флаги эффективных коэффициентов, указывающие элементы полосы частот, в которых существуют ненулевые эффективные коэффициенты преобразования. Технический результат - эффективное кодирование и декодирование остаточного блока. 2 н. и 13 з.п. ф-лы, 1 табл., 36 ил.

Изобретение относится к ультразвуковым средствам диагностической визуализации. Система содержит ультразвуковой зонд для получения последовательности ультразвуковых изображений, по мере того как осуществляется перфузия ткани контрастным веществом, при этом множество изображений дополнительно включает в себя анатомический ориентир, показывающий перемещение ткани, процессор перфузии контрастного вещества и процессор изображений, идентифицирующий анатомический ориентир и обрабатывающий изображения, содержащие анатомический ориентир, отбрасывая из обработки те изображения, которые не включают его. Способ заключается в получении последовательности ультразвуковых изображений опухоли и прилегающей к ней ткани, по мере перфузии контрастным веществом, обработке изображений для идентификации перемещения ткани, при этом обрабатываются только те изображения, которые не претерпели негативного влияния перемещения ткани, для определения параметра перфузии, который является биомаркером эффективности лечения. Во втором варианте способа выбирают ультразвуковые изображения, синхронизированные с дыхательными движениями, и выделяют в качестве относящегося к опухоли биомаркера нормированный параметр перфузии ткани контрастным веществом. Использование изобретения позволяет повысить точность в оценке регрессии ангиогенеза. 3 н. и 15 з.п. ф-лы, 10 ил.

Изобретение относится к системам видеонаблюдения, в частности к технологии воспроизведения записи видеонаблюдения и управления воспроизведением записи видеонаблюдения. Техническим результатом является сокращение времени воспроизведения записи видеонаблюдения без потери значимой информации. Указанный технический результат достигается тем, что система для управления воспроизведением содержит: средство выполнения видеозаписи, средство обнаружения движения и средство воспроизведения видеозаписи, при этом средство выполнения видеозаписи выполнено с возможностью выполнения, записи видеонаблюдения; средство обнаружения движения выполнено с возможностью распознавания изображения видеозаписи в реальном масштабе времени и с возможностью маркирования временного индекса для динамического кадра (динамических кадров) видеозаписи в процессе выполнения записи видеонаблюдения средством выполнения видеозаписи; и средство воспроизведения видеозаписи выполнено с возможностью получения временного индекса от средства обнаружения движения и с возможностью воспроизведения динамического кадра (динамических кадров) записи видеонаблюдения в соответствии с временным индексом в процессе воспроизведения записи видеонаблюдения. 2 н. и 6 з.п. ф-лы, 2 ил.

Изобретение относится к вычислительной технике, а именно к устройству и способу декодирования изображений. Техническим результатом является повышение эффективности декодирования информации. Устройство декодирования изображений принимает кодированный с прогнозированием поток битов, который создается посредством разделения каждого кадра сигнала движущегося изображения на опорные блоки заданного размера. Устройство осуществляет декодирование потока битов для получения сигнала движущихся изображений. Устройство содержит модуль декодирования для декодирования потока битов для получения информации, указывающей заданный размер. Устройство также работает в режиме прогнозирования движения и определяет вектор движения для каждого из опорных блоков или для каждого из единичных блоков прогнозирования движения, определенных как блоки, получаемые иерархическим разделением опорных блоков. Режим прогнозирования движения определяет процедуру прогнозирования движения для единичных блоков прогнозирования движения. 2 н.п. ф-лы, 26 ил.

Изобретение относится к вычислительной технике, а именно к кодированию и декодированию вектора движения путем прогнозирования вектора движения текущего блока. Техническим результатом является повышение точности прогнозирования и кодирования вектора движения. Способ декодирования изображения содержит этап, на котором получают информацию режима предсказания текущего блока из битового потока. Далее согласно способу определяют блок, совмещенный с текущим блоком из числа первого блока, совмещенного с текущим блоком в предшествующем по времени кадре, и второго блока, совмещенного с текущим блоком в следующем по времени кадре, для получения кандидатов предиктора вектора движения текущего блока, основываясь на полученной информации режима предсказания. А также получают кандидатов предиктора вектора движения текущего блока, используя определенный блок, совмещенный с текущим блоком. 4 з.п. ф-лы, 27 ил.
Наверх