Способ управления процессом ультразвукового распыления

Изобретение относится к химической, микроэлектронной и другим отраслям промышленности и может быть использовано для построения ультразвуковых распылителей. В способе управления процессом ультразвукового распыления жидкостей при осуществлении процесса контролируют амплитуду тока, являющегося разностью между током, протекающим через пьезоэлектрические элементы преобразователя колебательной системы, и реактивной емкостной составляющей этого тока, обусловленной собственной электрической емкостью пьезоэлектрических элементов. Увеличение или уменьшение амплитуды электрического напряжения, подаваемого от электронного генератора на пьезопреобразователь, осуществляют на основании сравнений контролируемых по току и электрическому напряжению значений импеданса жидкости, подвергаемой распыливанию со среднеарифметическим значением импеданса этой же жидкости, измеренным перед началом распыливания и собственным импедансом пьезопреобразователя колебательной системы. Увеличение или уменьшение амплитуды электрического напряжения производят до момента, пока измеренное значение импеданса не будет соответствовать среднеарифметическому значению между импедансом жидкости, измеренным перед началом распыливания и собственным импедансом пьезопреобразователя колебательной системы. Техническим результатом изобретения является повышение эффективности процесса за счет обеспечения автоматического установления оптимальных режимов ультразвукового воздействия и толщины слоя распыляемой жидкости, позволяющих осуществлять распыление с максимальной эффективностью и исключить возможность появления «срывов распыления». 5 ил.

 

Изобретение относится к химической, микроэлектронной и другим отраслям промышленности. Изобретение может быть использовано для построения ультразвуковых распылителей, применяемых в таких технологических процессах, как: нанесение фоторезистов при производстве модулей памяти, микросхем и процессоров, химико-механическое полирование полупроводниковых пластин-заготовок для производства полупроводниковых компонентов в микроэлектронной промышленности, нанесение полирующих жидкостей и покрытий в оптико-электронном приборостроении, нанесение покрытий на сердечные клапаны и стенты коронарных сосудов в медицинской промышленности [1], нанесение дезинфицирующих покрытий при производстве медицинской техники и имплантов, дезинфекции помещений, получение наночастиц и нанесение нанопокрытий в производстве функциональных наноматериалов, распыление нейтральных или специальных материалов для коагуляции взрыво-, пожаро- и химически опасных аэрозолей, распыление жидких удобрений, стимуляторов роста и гербицидов при выращивании сельскохозяйственной и садовоогородной продукции, распыление жидких ароматических и лекарственных препаратов (например, антибиотиков) в помещениях птичников, свинарен и коровников.

При ультразвуковом способе распыливания жидкость переходит в аэрозольное состояние за счет увеличения поверхностной энергии пленки жидкости, которое достигается путем наложения на нее механических колебаний высокой интенсивности ультразвуковой частоты. Преимуществами УЗ распыления являются: низкая энергоемкость; высокая производительность процесса; возможность обеспечивать мелкодисперсное и монодисперсное распыление; отсутствие распыляющего агента; возможность распылять высоковязкие жидкости без предварительного снижения вязкости; возможность мелкодисперсного распыления расплавов металлов; высокое качество и равномерность получаемых покрытий; наличие в каплях жидкости циркуляционных токов, способствующих ускорению процессов теплообмена, массопереноса на поверхности капли [2, 3].

Современные ультразвуковые распылители состоят из колебательной системы, конструктивно выполненной в виде последовательно установленных и акустически связанных между собой пьезоэлектрических элементов с частотнопонижающими металлическими накладками, одна из которых является распыляющей, и электронного генератора, предназначенного для питания колебательной системы. Процесс распыления в таких распылителях может реализовываться двумя способами: высокочастотное (более 1 МГц) распыление в фонтане и низкочастотное (менее 500 кГц) в слое.

В промышленности наибольшее распространение получил способ ультразвукового распыления в слое, заключающийся в подаче на излучающую поверхность ультразвуковой колебательной системы распыляемой жидкости и воздействии на нее механическими колебаниями ультразвуковой частоты. При этом распыление осуществляется путем отрыва капелек жидкости с гребней стоячих капиллярных волн, параметрически возбуждаемых на поверхности раздела сред жидкость-воздух вследствие возмущения поверхности жидкости ударными волнами, образующимися захлопывающимися кавитационными пузырьками, создаваемыми колеблющейся поверхностью излучателя.

Толщина слоя распыляемой жидкости, покрывающей колеблющуюся поверхность, является конечной величиной и в значительной степени определяет эффективность процесса. При этом для каждой жидкости существует своя оптимальная толщина слоя, зависящая как от самих свойств жидкости, так и от параметров ультразвукового воздействия, при которой процесс реализуется с наибольшей эффективностью. На фиг.1 приведены зависимости относительной производительности распыления от толщины слоя жидкости для различных амплитуд колебаний излучающей поверхности ультразвукового распылителя. Видно, что даже незначительное отклонение толщины слоя жидкости от оптимального значения приводит к существенному снижению производительности распыления.

Проблема усугубляется тем, что устройства регулирования подачи жидкости в распылитель являются инерционными и не способными оперативно реагировать на изменение производительности распыления, вызванной отклонением толщины слоя жидкости от оптимального значения. Так, например, увеличение толщины слоя жидкости приводит к снижению производительности распыления (выхода жидкости из распылителя), что в свою очередь при неизменной подачи жидкости в распылитель приводит к дальнейшему росту толщины слоя и уменьшению производительности. Этот процесс лавинообразно нарастает и, в конечном итоге, приводит к прекращению процесса распыления - «срыву распыления».

В настоящее время контроль «срыва распыления» осуществляется визуально - оператором. При обнаружении «срыва распыления» оператор отключает подачу жидкости в распылитель и выключает распылитель для обеспечения свободного стекания образовавшегося слоя жидкости. Затем оператор устанавливает необходимое значение электрического напряжения, подаваемого на электроды пьезопреобразователя колебательной системы, и повторно включает подачу жидкости [1].

Применяемый на практике способ управления процессом распыления обладает рядом серьезных недостатков:

- не позволяет оперативно регулировать амплитуду ультразвукового воздействия при изменении свойств жидкости, например вязкости;

- оптимальная толщина слоя для каждой жидкости подбирается экспериментальным путем, что требует длительной настройки оборудования и не позволяет обеспечить установку оптимальной толщины с высокой точностью;

- не позволяет контролировать и поддерживать в процессе распыления оптимальную толщину слоя жидкости;

- не исключает «срывов распыления» и требует длительного времени ручного установления рабочего режима распылителя после такого срыва;

- характеризуется возможностью появления брака продукции (например, при напылении покрытий, распылительной сушке продукта) при возникновении «срыва распыления», связанного с разбрызгиванием крупных капель жидкости.

Устранение указанных недостатков возможно только путем полной или частичной автоматизации управления процессом распыления. Наиболее полно эта задача решается в способе управления процессом ультразвукового распыления, принятом за прототип [4].

Способ управления процессом ультразвукового распыления, принятый за прототип, заключается в контроле параметров колебательной системы и изменении амплитуды электрического напряжения, подаваемого на электроды пьезопреобразователя колебательной системы, при изменении свойств распыливаемых материалов и производительности распыления. В качестве контролируемого параметра колебательной системы выступает ее резонансная частота, по скорости изменения которой в автоматическом режиме определяют увеличение толщины слоя жидкости и возникновение «срыва распыления».

Способ, принятый за прототип, повышает эффективность процесса за счет обеспечения автоматического обнаружения «срыва распыления», автоматического возобновления распыления после «срыва» и исключения необходимости визуального контроля процесса, однако он не устраняет существенных недостатков способа управления процессом распыления, заключающихся в:

- невозможности контроля и поддержания в процессе распыления оптимальной толщины слоя для различных жидкостей, что приводит к снижению производительности процесса распыления;

- невозможности установления амплитуды колебаний излучающей поверхности распылителя, оптимальной для каждой жидкости при заданной производительности, превышение которой ведет к образованию крупных капель - разбрызгиванию жидкости;

- снижении качества распыления из-за возникновения «срывов распыления», которые не устраняются полностью, поскольку автоматизируется только обнаружение срыва и возобновление процесса распыления.

Предлагаемое техническое решение направлено на устранение указанных недостатков прототипа и создание способа управления процессом ультразвукового распыления, обеспечивающего повышение эффективности реализуемого процесса за счет автоматического установления оптимальных режимов ультразвукового воздействия и толщины слоя распыляемой жидкости, позволяющих осуществлять распыление с максимальной эффективностью (производительностью) и исключить возможности появления «срывов распыления».

В предлагаемом способе управления процессом ультразвукового распыления, заключающемся в контроле параметров колебательной системы и изменении амплитуды электрического напряжения, подаваемого на электроды пьезопреобразователя колебательной системы, при изменении свойств распыливаемых материалов и производительности распыления, контролируют амплитуду тока, являющегося разностью между током, протекающим через пьезоэлектрические элементы преобразователя колебательной системы и реактивной емкостной составляющей этого тока, обусловленной собственной электрической емкостью пьезоэлектрических элементов. Увеличение или уменьшение амплитуды электрического напряжения, подаваемого от электронного генератора на пьезопреобразователь, осуществляют на основании сравнений контролируемых по току и электрическому напряжению значений импеданса жидкости, подвергаемой распыливанию со среднеарифметическим значением импеданса этой же жидкости, измеренным перед началом распыливания и собственным импедансом пьезопреобразователя колебательной системы. Увеличение или уменьшение амплитуды электрического напряжения производят до момента, пока измеренное значение импеданса не будет соответствовать среднеарифметическому значению между импедансом жидкости, измеренным перед началом распыливания, и собственным импедансом пьезопреобразователя колебательной системы.

Суть предлагаемого технического решения заключается в том, что для управления процессом ультразвукового распыления и установления оптимальных параметров ультразвукового воздействия и толщины слоя предлагается контролировать изменение импеданса ультразвуковой колебательной системы, равного произведению электрического напряжения на пьезопреобразователе колебательной системы и тока, являющегося разностью между током, протекающим через пьезоэлектрические элементы преобразователя колебательной системы, и реактивной емкостной составляющей этого тока, обусловленной собственной электрической емкостью пьезоэлектрических элементов.

Сущность технического решения поясняется фиг.2. На фиг.2а приведены зависимости импеданса ультразвуковой колебательной системы и производительности распыления от толщины слоя жидкости. Зависимости получены для воды при амплитуде колебаний распылительной поверхности 14 мкм.

На первом участке зависимости, представленной на фиг.2а, происходит возрастание толщины слоя жидкости и, как следствие, возрастает величина акустической нагрузки на ультразвуковую колебательную систему. Толщина слоя жидкости при этом еще мала для создания разряжения, достаточного для образования кавитации. Ввиду отсутствия кавитации измеренное значение импеданса колебательной системы принимается за импеданс жидкости.

В начале участка 2 (фиг.2а) происходит зарождение кавитации на поверхности ультразвуковой колебательной системы, вызывающее уменьшение импеданса колебательной системы и начало процесса распыления. Дальнейшее увеличение слоя в пределах 2 участка вызывает увеличение производительности до максимального значения. При этом кавитационные пузырьки полностью покрывают распыляющую поверхность, а значение импеданса колебательной системы уменьшается до среднего значения между импедансом жидкости в отсутствии кавитации и импедансом колебательной системы, измеренным до начала распыления.

Дальнейшее увеличение слоя распыляемой жидкости (участок 3 на фиг.2а) вызывает снижение производительности и повторный рост импеданса колебательной системы, обусловленный возросшей акустической нагрузкой со стороны слоя жидкости.

В конечном итоге распыление полностью прекращается (участок 4 на фиг.2а), а измеренное значение импеданса повторно становится равным импедансу жидкости в отсутствие кавитации.

На фиг.2б показаны зависимости, полученные при уменьшении толщины слоя жидкости. В этом случае на распылительной поверхности вначале формировался слой жидкости, затем осуществлялась генерация ультразвуковых колебаний с амплитудой 14 мкм, приводящих к возникновению кавитации и распылению жидкости. Подача дополнительной жидкости в процессе распыления не осуществлялась, что приводило к уменьшению толщины слоя жидкости и приближению его к оптимальному значению (0,8 мм для воды). Как видно из фиг.2б измеренное значение импеданса при этом соответствовало среднему значению между импедансом жидкости в отсутствие кавитации и импедансом колебательной системы, измеренным до начала распыления.

Дальнейшее распыление жидкости (участок 2 на фиг.2б) приводит к уменьшению слоя ниже оптимального значения и уменьшению производительности распыления. Значение импеданса при этом стремится к значению собственного импеданса колебательной системы, работающей в воздушной среде. Подобные зависимости могут быть получены для различных амплитуд колебаний распылительной поверхности и для различных по физическим свойствам жидкостей.

Таким образом, оптимальной толщине слоя распыляемой жидкости соответствует среднеарифметическое значение импеданса распыляемой жидкости, измеренное перед началом распыливания и собственного импеданса колебательной системы.

На фиг.2в представлена зависимость изменения импеданса колебательной системы в процессе распыления жидкости. Управление процессом осуществляется по предлагаемому способу.

Участок 1 соответствует подаче напряжения на пьезопреобразователь колебательной системы и генерации ультразвуковых колебаний с амплитудой, недостаточной для распыления жидкостей (4…6 мкм). В этом режиме осуществляется измерение собственного импеданса колебательной системы.

На участке 2 осуществляется подача распыляемой жидкости и одновременное увеличение амплитуды колебаний. На первой половине участке 2 происходит увеличение толщины слоя жидкости и фиксируется повышение измеряемого значения импеданса жидкости. Процесс продолжается до тех пор, пока толщина слоя жидкости и амплитуда колебаний распыляющей поверхности не достигнет значения, достаточного для распыления жидкости. Этот момент соответствует максимальному измеренному значению импеданса и принимается за импеданс жидкости в отсутствие кавитации.

Дальнейшее увеличение напряжения на пьезопреобразователе колебательной системы приводит к возникновению кавитации в распыляемой жидкости, увеличению производительности распыления и уменьшению измеряемого значения импеданса.

В начале участка 3 толщина слоя жидкости равна оптимальной, а измеренное значение импеданса равно среднеарифметическому значению импеданса распыляемой жидкости, и собственного импеданса колебательной системы. Однако амплитуда ультразвуковых колебаний распыляющей поверхности оказывается чрезмерной для оптимальной толщины слоя жидкости, что приводит к его уменьшению меньше оптимального значения.

Это факт фиксируется по уменьшению измеряемого значения импеданса и приводит к уменьшению напряжения подаваемого на пьезопреобразователь колебательной системы. Таким образом, значение импеданса приводится в соответствие со среднеарифметическим значением между импедансом жидкости, измеренным перед началом распыливания и собственным импедансом пьезопреобразователя колебательной системы.

В предлагаемом способе управления процессом ультразвукового распыления задача повышения эффективности решается за счет:

- отсутствия необходимости ручной установки амплитуды ультразвукового воздействия;

- автоматического установления оптимальной толщины слоя распыляемой жидкости;

- автоматического установления необходимой амплитуды ультразвукового воздействия в зависимости от требуемой производительности распыления жидкости;

- полного исключения возможности возникновения «срывов распыления».

Предложенный способ реализуется в аппарате ультразвукового распыления жидкостей, разработанном ООО «Центр ультразвуковых технологий АлтГТУ». Фото аппарата представлено на фиг.3. Ниже приведены его технические характеристики:

Мощность, ВА 150
Питание от сети переменного тока напряжением, В 220±22
Амплитуда колебаний рабочего инструмента, мкм 20-30
Время непрерывной работы, ч, не более 4
Габаритные размеры: электронный генератор, мм 90×270×80
колебательная система, мм 85×80×105
Вязкость распыляемой жидкости, сП, не более 20
Средний размер распыляемых частиц, мкм 45
Производительность, мл/с (по воде), не более 2

Практическая реализация предложенного способа управления в составе аппарата для распыления планируется с I квартала 2012 года.

Список литературы

1. Хмелев В.Н. Ультразвуковое распыление жидкостей [Текст] / В.Н.Хмелев, А.В.Шалунов, А.В.Шалунова - Барнаул АлтГТУ, 2010. - 272 с.

2. Экнадиосянц О.К. Получение аэрозолей [Текст] / О.К.Экнадиосянц // Физические основы ультразвуковой технологии / под ред. Л.Д.Розенберга. - М.: Наука, 1970. - С.337-395.

3. Новицкий Б.Г. Применение акустических колебаний в химико-технологических процессах (Процессы и аппараты химической и нефтехимической технологии) [Текст] / Б.Г.Новицкий. - М.: Химия, 1983. - 192 с.

4. Patent US 5588592. Method and apparatus for detecting the onset of flooding of an ultrasonic atomizer / Wilson; Robert F.

Способ управления процессом ультразвукового распыления жидкостей, заключающийся в контроле параметров колебательной системы и изменении амплитуды электрического напряжения, подаваемого на электроды пьезопреобразователя колебательной системы, при изменении свойств распыливаемых материалов и производительности распыления, отличающийся тем, что в процессе распыления контролируют амплитуду тока, являющегося разностью между током, протекающим через пьезоэлектрические элементы преобразователя колебательной системы, и реактивной емкостной составляющей этого тока, обусловленной собственной электрической емкостью пьезоэлектрических элементов, а увеличение или уменьшение амплитуды электрического напряжения, подаваемого от электронного генератора на пьезопреобразователь, осуществляют на основании сравнений контролируемых по току и электрическому напряжению значений импеданса жидкости, подвергаемой распыливанию, со среднеарифметическим значением импеданса этой же жидкости, измеренным перед началом распыливания, и собственным импедансом пьезопреобразователя колебательной системы, причем увеличение или уменьшение производят до момента, пока измеренное значение импеданса не будет соответствовать среднеарифметическому значению между импедансом жидкости, измеренным перед началом распыливания, и собственным импедансом пьезопреобразователя колебательной системы.



 

Похожие патенты:

Изобретение относится к области ультразвуковой техники, а именно к устройствам для мелкодисперсного распыления (диспергирования) жидкостей, и может быть использовано в наноиндустрии, химико-фармацевтической и медицинской промышленности.

Изобретение относится к устройствам для распыления жидкости. .

Изобретение относится к биотехнологии, медицине, парфюмерной промышленности, к производству лекарственных и биологически активных веществ. .

Изобретение относится к устройствам для распыления жидкостей, в частности воды и водных растворов, используемых при тушении пожаров в закрытых помещениях, может быть применено и для целого ряда производственных процессов.

Изобретение относится к технике мокрого пылеулавливания и может применяться в различных отраслях промышленности для очистки запыленных газов. .

Изобретение относится к технике мокрого пылеулавливания и может применяться в различных отраслях промышленности для очистки запыленных газов. .

Изобретение относится к технике мокрого пылеулавливания и может применяться в различных отраслях промышленности для очистки запыленных газов. .

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов.

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности. .

Изобретение относится к области ультразвуковой техники, а именно к устройствам для мелкодисперсного распыления жидкостей, и может быть использовано в наноиндустрии, химико-фармацевтической и медицинской промышленности

Изобретение относится к средствам распыливания жидкостей и растворов и может применяться в двигателестроении, химической и пищевой промышленности. Акустическая вихревая форсунка содержит корпус, элементы для подвода жидкости и воздуха, корпус состоит из двух соосных, связанных между собой цилиндрических втулок: втулки большего диаметра и втулки меньшего диаметра, при этом внутри втулки меньшего диаметра, соосно ей, расположен шнек, жестко связанный с ее внутренней поверхностью, причем внешняя поверхность шнека представляет собой винтовую канавку, образующую с внутренней поверхностью втулки меньшего диаметра винтовую внешнюю полость, а внутри шнека выполнено отверстие с винтовой нарезкой, соединенное с трубкой для подвода жидкости под давлением, а во втулке большего диаметра, соосно ей, расположена фасонная втулка, внутренняя поверхность которой образована конической и цилиндрической поверхностями, и которая жестко закреплена во втулке большего диаметра через герметизирующую прокладку, имеющую, по крайней мере, одно дроссельное отверстие, и образующую с торцевой поверхностью шнека и внутренней поверхностью втулки меньшего диаметра - цилиндрическую камеру, которая посредством канала соединена с источником сжатого воздуха, а в цилиндрической полости фасонной втулки расположен свободный конец трубки для подвода жидкости, размещенный в коаксиальном упругом кольце, которое с герметизирующей прокладкой образует коническую резонансную камеру, при этом дроссельное отверстие выполняет функцию горловины резонатора «Гельмгольца». Технический результат повышение эффективности распыления жидкости. 2 з.п. ф-лы, 1 ил.

Изобретение может быть использовано в химической промышленности для получения сорбентов и носителей катализаторов, в порошковой металлургии, а также в фармацевтике при получении носителей для активных ингредиентов и инкапсулированных препаратов. В установке для получения ультрадисперсных порошков ультразвуковая форсунка расположена в нижней части сушильной камеры. Выходной патрубок форсунки находится выше газораспределительной пластины, имеющей большую плотность отверстий вблизи форсунки и меньшую - вблизи стенок камеры. Вход форсунки сообщен со шприцевым насосом для подачи исходного сырья и с перистальтическим насосом для подачи воды в качестве охлаждающего агента. Ниже газораспределительной пластины расположен входной патрубок для сушильного агента, сообщенный с выходом теплообменника-калорифера, вход которого подключен к выходу адсорбционного осушителя. Осушитель сообщен через магистральный фильтр с компрессором. Верхняя часть сушильной камеры посредством соединительного патрубка связана с циклоном, сообщенным в свою очередь с электрофильтром. Техническим результатом изобретения является упрощение конструкции за счет исключения низкотемпературного, криогенного и специального оборудования, расширение ассортимента получаемых в ней порошков и функционирование в непрерывном режиме. 1 з.п. ф-лы, 5 ил.

Изобретение относится к медицинской технике, в частности к ингаляторам, в которых лекарственное средство в емкости с плоской нижней частью переводится в аэрозольное состояние при помощи вибрационного пьезоэлектрического преобразователя. Сущность: в преобразователь выдают сигнал, имеющий форму волны, содержащей два синусоидальных сигнала на двух частотах, соответствующих основной резонансной частоте и дополнительной резонансной частоте, для создания колебаний на двух или более различных частотах, включая основную резонансную частоту преобразователя и по меньшей мере одну дополнительную резонансную частоту преобразователя. Технический результат - повышение степени дезагрегации, повышение эффективности за счет снижения трения. 4 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к средствам распыливания жидкостей и растворов и может применяться в двигателестроении, химической и пищевой промышленности. Акустическая вихревая форсунка содержит корпус и элементы для подвода жидкости и воздуха, корпус состоит из двух соосных, связанных между собой цилиндрических втулок: втулки большего диаметра и втулки меньшего диаметра, при этом внутри втулки меньшего диаметра, соосно ей, расположен шнек, жестко связанный с ее внутренней поверхностью, причем внешняя поверхность шнека представляет собой винтовую канавку, образующую с внутренней поверхностью втулки меньшего диаметра винтовую внешнюю полость, а внутри шнека выполнено отверстие с винтовой нарезкой, соединенное с трубкой для подвода жидкости под давлением, а во втулке большего диаметра, соосно ей, расположена фасонная втулка, внутренняя поверхность которой образована конической и цилиндрической поверхностями и которая жестко закреплена во втулке большего диаметра через герметизирующую прокладку, имеющую, по крайней мере, одно дроссельное отверстие и образующую с торцевой поверхностью шнека и внутренней поверхностью втулки меньшего диаметра цилиндрическую камеру, которая посредством канала соединена с источником сжатого воздуха, а в цилиндрической полости фасонной втулки расположен свободный конец трубки для подвода жидкости, размещенный в коаксиальном упругом кольце, которое с герметизирующей прокладкой образует коническую резонансную камеру, при этом дроссельное отверстие выполняет функцию горловины резонатора «Гельмгольца», к торцевой части втулки меньшего диаметра корпуса прикреплен диффузор, на срезе которого установлен рассекатель потока жидкости, выполненный в виде перфорированного кольца, соосного с диффузором. Технический результат - повышение эффективности распыления жидкости. 1 ил.

Изобретение относится к устройствам, предназначенным для распыления жидкостей и растворов, может быть использовано для работы в устройствах распылительной сушки, а также в различных отраслях пищевой, фармацевтической, нефтяной и химической промышленности и позволяет повышение эффективности распылителя за счет создания условий для разделения по размеру частиц распыленной жидкости. В ультразвуковом распылителе жидкостей ультразвуковой излучатель установлен на дне смесительной камеры. Патрубок транспортирующего газа расположен в верхней части камеры и снабжен вентилятором. Патрубок подвода жидкости расположен в нижней части камеры. Выходной патрубок для отбора золя распыляемой жидкости расположен в верхней части камеры напротив патрубка транспортирующего газа. Выходной патрубок снабжен ограничительной пластиной, повторяющей конфигурацию сечения патрубка и установленной в нижней его части с возможностью регулирования пластины по высоте относительно потока золя. Техническим результатом изобретения является повышение эффективности распылителя за счет создания условий для разделения по размеру частиц распыленной жидкости для дальнейшей ее сушки с получением готового продукта в виде порошка с однородной дисперсией 1-4 мкм. 2 ил.

Изобретение относится к средствам распыливания жидкостей, растворов и может быть использовано в сельскохозяйственной, пищевой и легкой промышленности. В акустическом распылителе к резонаторному диску со стороны, противоположной полостям глухих отверстий, посредством винта крепится рассекатель, выполненный в виде перфорированного диска. К периферийной части диска соосно резонаторному диску прикреплена перфорированная цилиндрическая обечайка. Перфорированный диск размещен во внутренней полости обечайки. Техническим результатом изобретения является повышение эффективности распыления и надежности работы. 2 ил.

Изобретение относится к ультразвуковой технике, в частности к распылителям жидкостей, и может быть использовано для распыления воды, суспензий, лекарственных препаратов и агрессивных жидкостей. Распылитель содержит корпус, пьезопреобразователь в качестве источника колебаний и распыляющий узел в виде упругой пластины. Пластина одним из краев консольно прикреплена к пьезопреобразователю и частично погружена противоположным свободным краем в распыляемую жидкость. Техническим результатом изобретения является упрощение конструкции распылителя жидкости и увеличение производительности распыления. 2 ил.

Изобретение относится к устройству для создания пульсирующей струи текучей среды из подвергнутой воздействию давлением текучей среды и может быть использовано для обработки посредством газопламенного напыления или плазменного напыления и/или электродугового напыления поверхности заготовки. Кроме того, устройство может быть использовано для снятия грата с заготовки, и/или удаления грязи с заготовки, и/или для удаления слоев с заготовки. Устройство также может быть применено для воздействия на поверхность заготовки с помощью текучей среды в форме моющей щелочи, и/или воды, и/или эмульсии, прежде всего водно-масляной эмульсии, и/или масла. Кроме того, устройство может быть использовано для уплотнения поверхности заготовки путем воздействия на поверхность заготовки с помощью текучей среды, прежде всего с помощью воды. Устройство содержит систему трубопроводов, которая содержит по меньшей мере одно сопло, которое имеет устье сопла, из которого может выходить пульсирующая струя текучей среды из подвергнутой воздействию давлением текучей среды. Устройство имеет камеру, в которой выполнено устройство создания волн давления для создания волн давления текучей среды. Камера сообщается с системой трубопроводов через выпускное отверстие для созданных волн давления текучей среды. Устройство также содержит регулировочное устройство для управления амплитудой волн давления текучей среды в системе трубопроводов по меньшей мере перед одним устьем сопла. С помощью регулировочного устройства может быть отрегулировано образованное из частного длины пути для волн давления текучей среды между выпускным отверстием камеры и по меньшей мере одним устьем сопла по меньшей мере одного сопла в системе трубопроводов и длины волны волн давления в системе трубопроводов число Гельмгольца Не:=L/λ. В установке имеется резервуар для заготовок, в котором предусмотрена возможность воздействия на заготовки пульсирующей струей текучей среды. В установке, кроме того, имеется устройство сбора текучей среды, которое соединено с нагнетательным насосом для возврата собранной текучей среды в устройство для создания струи. В способе обработки стенок отверстия в заготовке с помощью устройства для создания струи стенку отверстия обрабатывают из сопла с помощью пульсирующей струи текучей среды высокого давления. Сопло относительно заготовки вращательно перемещают вокруг оси отверстия и поступательно перемещают в направлении оси отверстия. В способе улучшения участка заготовки на участок заготовки наносят покрытие поверхности, при котором на втором этапе покрытие обрабатывают посредством пульсирующей струи текучей среды высокого давления. Техническим результатом группы изобретений является улучшение участков заготовок за счет уплотнения путем воздействия на них пульсирующей струи текучей среды. 5 н. и 20 з.п. ф-лы, 12 ил.

Изобретение относится к средствам распыливания жидкостей, растворов и может быть использовано в двигателестроении, химической, пищевой и легкой промышленности. Акустическая форсунка с распылительным диффузором содержит корпус с размещенным внутри генератором акустических колебаний в виде сопла и резонатора, трубок для подвода воздуха и жидкости, корпус выполнен в виде вертикально расположенной цилиндрической втулки, в верхней части которой расположена трубка для подвода воздуха, а перпендикулярно ее оси расположена трубка для подвода жидкости, причем внутри корпуса, соосно ему, жестко закреплена втулка с верхним и нижним фланцами, при этом нижний фланец жестко зафиксирован в проточке, выполненной в корпусе, а внутри втулки, соосно ей, расположен кольцевой объемный резонатор, выполненный в виде чашки с конической поверхностью, при этом чашка запрессована на стержне диаметром d резонатора, а в его хвостовой части расположены фиксирующие диски, выполненные в виде упругих лепестков, взаимодействующих с внутренней поверхностью втулки, а в нижнем фланце расположено по крайней мере одно сопло под углом к оси резонатора, величина которого лежит в следующем интервале величин 20°÷40°, при этом продолжение оси сопла лежит на окружности, находящейся в средней части конической поверхности резонатора, к нижней части корпуса форсунки соосно прикреплен внешний диффузор распылителя, а к торцевой поверхности стержневого газоструйного излучателя в виде резонатора прикреплен внутренний перфорированный диффузор, таким образом, что выходные сечения внешнего и внутреннего диффузоров лежат в одной плоскости, перпендикулярной оси газоструйного излучателя. Технический результат - повышение эффективности распыления. 1 ил.
Наверх