Способ получения иодполистирола

Настоящее изобретение относится к способу получения иодполистирола. Описан способ получения иодполистирола, заключающийся в том, что к раствору полистирола в хлороформе добавляют молекулярный иод, отличающийся тем, что в реакционную смесь прибавляют трифторуксусную кислоту (ТФУК) (в соотношении 1:5 к хлороформу), 40-45% водный раствор надуксусной кислоты (НУК) в качестве окислителя и выдерживают в течение 1,5 часов при 50-60°С. Технический результат - удешевление процесса и повышение его экологичности. 1 ил., 1 табл., 1 пр.

 

Изобретение относится к способу получения иодполистирола (ИПС) и предназначено для синтеза полимерсодержащих реагентов поливалентного иода (например, диацетатиодозополистирола) - мягких и селективных окислителей, имеющих широкое применение в тонком органическом синтезе, а также химической и фармацевтической отраслях промышленности. К основным преимуществам полимерсодержащих реагентов поливалентного иода следует отнести: легкость отделения от целевых продуктов реакции, возможность регенерации и многократного использования без заметной потери активности, низкая токсичность и высокая взрывобезопасность, экологичность.

Известно несколько методов прямого иодирования полистирола (ПС), основанных на реакции электрофильного замещения действием молекулярного иода в присутствии различных окислителей

Известен способ прямого иодирования полистирола молекулярным иодом в присутствии иодноватой кислоты в качестве окислителя, четыреххлористого углерода и 50%-ной серной кислоты в большом количестве нитробензола (например, 52 г полистирола, 51 г иода, 19 г HIO3, 50 мл CCl4, 50 мл 50%-ной серной кислоты в 1,5 литрах нитробензола). Реакционную смесь нагревают на масляной бане до 90°C при постоянном перемешивании и выдерживают в этих условиях 40-50 часов. Степень замещения атомов водорода на атомы иода в полимерной цепи составляет 82% (J.V.Crivello, J.L. Lee. Polymer Bulletin, v.16, 1986, p.243-248).

В другом известном способе прямого иодирования полистирола молекулярным иодом, где в качестве окислителя используют пентаоксид иода I2O5 в схожих условиях (например, 16 г полистирола, 16 г иода, 6 г I2O5, 40 мл CCl4, 30 мл 50%-ной серной кислоты в 0,2 литрах нитробензола при 90°C, в течение 40-50 ч), удается ввести атом иода в 88% звеньев полимерной цепи (Y.Yamada, M. Okawara. Makromol. Chem., v.152, 153, 1972, H.Togo, S.Abe, G.Nogami, M.Yokoyama. Bull. Chem. Soc. Jpn, v.72, 1999, p.2351-2356).

Недостатками данных способов являются:

1) использование дорогих окислителей - I2O5 и HIO3;

2) большое количество органического растворителя - нитробензола;

3) длительность проведения реакции;

4) высокая температура проведения реакции.

Известен также способ прямого иодирования полистирола молекулярным иодом в присутствии фенилиодозотрифторацетата (ФИТФА) в качестве окислителя. По данной методике полистирол иодируется в хлороформе при комнатной температуре в течение 1-3 часов при эквимолярных количествах реагентов или при 10-20%-ном избытке ФИТФА. Степень замещения атомов водорода на атомы иода в звеньях полистирольной цепи составляет в зависимости от соотношения реагентов 0,5-1 (Е.Б.Меркушев, Г.М.Ковешникова, Н.Д.Юдина. Авторское свидетельство №829634 (СССР), 1981; N.D.Yudina, V.S.Raida, O.L.Vasil'eva, V.V.Deniskin, M.P.Stepanets and A.S.Sitnikov. Polymer Science U.S.S.R., v.31, is.6, 1989, p.1318-1323).

Этот способ наиболее близкий по технической сущности к заявляемому изобретению (прототип). Основным недостатком прототипа является высокая стоимость ФИТФА.

Целью заявляемого способа являются удешевление процесса и повышение экологичности.

Способ получения иодполистирола, заключающийся в том, что к раствору полистирола в хлороформе добавляют молекулярный иод, трифторуксусную кислоту (ТФУК) (в соотношении 1:5 к хлороформу), 40-45% водный раствор надуксусной кислоты (НУК) в качестве окислителя и выдерживают в течение 1,5 часов при 50-60°C.

Заявляемый способ получения иодполистирола достигается за счет использования в качестве окислителя 40-45%-ной надуксусной кислоты, что позволяет отказаться от использования нитробензола, снизить температуру проведения реакции, сократить время реакции и значительно удешевить процесс (НУК в 10 раз дешевле ФИТФА).

Указанные отличительные признаки предлагаемого способа определяют его новизну и существенные отличия, в сравнении с известным уровнем науки и техники в области прямого иодирования полистирола, как способа, позволяющего значительно сократить количество используемых ресурсов и существенно ускорить процесс.

Сущность предлагаемого способа и отличия от прототипа поясняет пример его конкретного осуществления.

Структуру полученного продукта идентифицируют методом ИК-спектроскопии и количественным анализом на иод колбовым методом Шенигера.

Пример. В колбу, снабженную магнитной мешалкой и обратным холодильником, вносят 1,09 г (0,01 моль) полистирола и 25 мл хлороформа. К полученному раствору полистирола прибавляют 1,90 г (0,0075 моль) тонко растертого иода и 5 мл ТФУК. Реакционную смесь нагревают на водяной бане до 50-60°C. При интенсивном перемешивании в реакционный сосуд в течение 20 минут из капельной воронки постепенно добавляют 10 мл 40-45% водного раствора НУК. Реакционную массу выдерживают в течение 1,5 ч до перехода окраски из красно-бурой в желтую. По окончании реакции (рис.1), реакционную смесь промывают дважды водой, затем 5% водным раствором сульфита натрия, высаживают продукт в гексан. И после фильтрования и высушивания получают продукт с выходом 90-96% и степенью замещения водорода атомами иода в звеньях полистирольной цепи 85-90%. ИК: 1005, 816, 759, 700 см-1.

Сравнительная характеристика способов иодирования полистирола приведена в таблице.

Окислитель Условия проведения реакции иодирования
Температура,°C Время, ч Степень замещения, % Растворитель
ФИТФА 18-20 1-3 0,5-1 хлороформ
I2O5 90 40-50 0,88 нитробензол
HIO3 90 40-50 0,82 нитробензол
НУК 50-60 1,5 0,8-0,9 смесь ТФУК: хлороформ (1:5)

Способ получения иодполистирола, заключающийся в том, что к раствору полистирола в хлороформе добавляют молекулярный иод, отличающийся тем, что в реакционную смесь прибавляют трифторуксусную кислоту (ТФУК) (в соотношении 1:5 к хлороформу), 40-45% водный раствор надуксусной кислоты (НУК) в качестве окислителя и выдерживают в течение 1,5 ч при 50-60°С.



 

Похожие патенты:

Изобретение относится к способу получения галобутилкаучука взаимодействием галогена и бутилкаучука, полученного методом низкотемпературной суспензионной сополимеризации изобутилена с изопреном на катализаторе хлористый алюминий в среде хлорметила, при этом изобутилен содержит не менее 99.97% мас.
Изобретение относится к способу получения полиалкенильных ацилирующих агентов. .

Изобретение относится к усовершенствованным способам галоидирования полимеров. .
Изобретение относится к получению бромбутилкаучука, используемого в нефтехимической промышленности, путем обработки бутилкаучука в углеводородном растворителе бромом, выделяющимся в зоне реакции при взаимодействии водного раствора бромида натрия с окислителем.

Изобретение относится к технологии получения хлорированных полимеров и сополимеров олефиновых углеводородов. .
Изобретение относится к химической технологии, а более конкретно к технологии получения перхлорированных полимеров (ПВХ) и сополимеров (СВХ) винилхлорида. .

Изобретение относится к способу улучшения перерабатываемости (технологичности) полимеров бутилкаучуков за счет увеличения в полимерной цепи количества повторяющихся звеньев, происходящих, по меньшей мере, из одного мультиолефинового мономера.
Изобретение относится к способу радикальной полимеризации для получения галогенированных полимеров. .

Изобретение относится к способу получения полимеров формулы (1), содержащих дихлорциклопропановые группы в основной цепи и боковых звеньях макромолекул Способ заключается во взаимодействии атактического 1,2-полибутадиена с хлороформом и водным раствором щелочного металла в присутствии четвертичной аммониевой соли в качестве катализатора межфазного переноса при температуре 40-50°С в течение 2-6 ч, отличающийся тем, что синтез проводят при мольном соотношении 1,2-полибутадиен: CHCl3:NaOH: катализатор, равном 1:4-14:1,5-2:0,001-0,002.

Изобретение относится к области получения модифицированных каучуков, а именно к способам получения хлорированных полидиенов путем присоединения дихлоркарбенов по двойным связям в условиях межфазного катализа.

Изобретение относится к способу получения вулканизуемых пероксидами галогенбутильных иономеров с высоким содержанием мультиолефина. .
Изобретение относится к технологии получения обеззараживающих полимерных материалов и может быть использовано в химической промышленности в качестве фильтрующего материала или добавки в смеси фильтрующих материалов, или компонента фильтрующих композитов для обеззараживания и очистки жидкостей, преимущественно питьевой воды, или газов.
Изобретение относится к получению галогенированных полимеров, которые могут быть использованы в резиновой и шинной промышленности, в частности для изготовления автомобильных камер, боковин радиальных шин, изделий медицинского назначения, клеев, инжекционных и экструзионных изделий.

Изобретение относится к непрерывному способу галоидирования эластомеров, а именно к непрерывному способу галоидирования ненасыщенного эластомера, растворенного в органическом растворителе.
Изобретение относится к получению галогенированных полимеров, которые могут быть использованы в резиновой и шинной промышленности, в частности для изготовления автомобильных камер, боковин радиальных шин, изделий медицинского назначения, клеев, инжекционных и экструзионных изделий.

Изобретение относится к получению галогенированных полимеров, которые могут быть использованы в резиновой и шинной промышленности, в частности к способу получения галобутилкаучука
Наверх