Устройство для передачи постоянного тока высокого напряжения

Изобретение относится к области электротехники и может быть использовано в устройствах для передачи постоянного тока высокого напряжения. Техническим результатом является обеспечение высокой варьируемости устройства в режимах работы, в частности, для компенсации обусловленных работой отключений. В устройстве для передачи постоянного тока высокого напряжения имеются первый преобразовательный блок (1) и второй преобразовательный блок (4), которые соответственно подключены к магистральной линии (11, 21) и к обратной линии (12, 22). Каждый преобразовательный блок (1, 4) подключен к отдельной независимой обратной линии (12, 22). Обратные линии (12, 22) соединены между собой через полюсную линию (31), причем полюсная линия (31) может прерываться с помощью блока (32) прерывания полюсной линии. 7 з.п. ф-лы, 5 ил.

 

Изобретение относится к устройству для передачи постоянного тока высокого напряжения с первым преобразовательным блоком и со вторым преобразовательным блоком, которые соответственно подключены к магистральной линии и к обратной линии.

Подобное устройство известно из практики. В известном устройстве преобразовательные блоки подключены, соответственно, к магистральной линии и к общей обратной линии, причем обратная линия связана с единственной отводной линией устройства вспомогательной линии, чтобы обе цепи постоянного тока замкнуть на один и тот же для обеих магистральных линий заземляющий электрод. Однако отсюда возникают некоторые ограничения в режимах работы устройства, в особенности в том случае, когда возникает сбой в работе устройства вспомогательной линии, и поэтому одна магистральная линия должна использоваться в качестве обратной линии.

В основе изобретения лежит задача создать устройство вышеназванного типа, которое отличается высокой варьируемостью в режимах работы, особенно для компенсации обусловленных функционированием отключений.

Эта задача в устройстве вышеназванного типа решается в соответствии с изобретением тем, что каждый преобразовательный блок подключен на отдельную независимую обратную линию и что обратные линии соединены между собой через полюсную линию, которая может прерываться с помощью блока прерывания полюсной линии.

За счет того, что теперь имеются две обратные линии, которые в биполярном нормальном режиме работы соотнесены с соответствующим преобразовательным блоком, но связаны через прерываемую полюсную линию друг с другом, можно, например, при обусловленных функционированием отключениях обратной линии и при замыкающемся затем блоке прерывания полюсной линии, поддерживать, однако, и далее монополярный режим работы с оставшейся проводящей обратной линией и соотнесенной с ней магистральной линией, или можно также переходить в другие режимы работы.

Целесообразные дальнейшие формы выполнения изобретения представлены в зависимых пунктах формулы изобретения.

Далее более подробно поясняется пример выполнения соответствующего изобретению устройства со ссылками на чертежи, на которых показано следующее:

фиг.1 схема примера выполнения соответствующего изобретению устройства;

фиг.2 схема по фиг.1 в биполярном режиме работы соответствующего изобретению устройства с двумя работающими обратными линиями;

фиг.3 схема по фиг.1 в монополярном режиме работы соответствующего изобретению устройства с двумя работающими обратными линиями;

фиг.4 схема по фиг.1 в монополярном режиме работы соответствующего изобретению устройства с одной единственной работающей обратной линией; и

фиг.5 схема по фиг.1 в монополярном режиме работы соответствующего изобретению устройства с отключенными обратными линиями и второй магистральной линией, включенной как обратная линия для первой магистральной линии.

Фиг.1 показывает схему примера выполнения соответствующего изобретению устройства для биполярной передачи постоянного тока высокого напряжения. Устройство по фиг.1 содержит первый преобразовательный блок 1, который здесь условно показан с двумя преобразователями 2, 3, а также второй преобразовательный блок 4, который здесь условно также представлен двумя преобразователями 5, 6. С помощью каждого преобразовательного блока 1, 4 из переменного напряжения в диапазоне, в типовом случае, от нескольких десятков киловольт до нескольких сотен киловольт, вводимого в один из соответствующих преобразовательных блоков 1, 4 через линии 7, 8, 9, 10 переменного напряжения, может вырабатываться постоянное напряжение, соответственно, того же порядка величины.

К первому преобразовательному блоку 1 подключены первая магистральная линия 11 и первая обратная линия 12, в которые может вводиться постоянное напряжение, выработанное первым преобразовательным блоком 1. В первую магистральную линию 11 включен блок 13 разъединения магистральной линии, с помощью которого первая магистральная линия 11 со своим отводом является прерываемой от первого преобразовательного блока 1, причем здесь, в порядке пояснения, следует упомянуть, что в настоящем описании под понятием «блок разъединения» понимается устройство для включения обесточенного проводника сильного тока. Соответственно в первую обратную линию 12 включен первый блок 14 разъединения обратной линии, с помощью которого первая обратная линия 12 со своим отводом является прерываемой от первого преобразовательного блока 1.

На противоположных первому преобразовательному блоку 1 сторонах блока 13 разъединения магистральной линии, размещенного в первой магистральной линии 11, и блока 14 разъединения обратной линии, размещенного в первой обратной линии 12, первая шунтирующая линия 15 соединяет первую магистральную линию 11 и первую обратную линию 12, причем в первую шунтирующую линию 15 включен блок 16 разъединения шунтирующей линии, с помощью которого первая шунтирующая линия 15 является прерываемой.

На противоположной первому блоку 14 разъединения обратной линии стороне вывода первой шунтирующей линии 15 к первой обратной линии 12 подсоединены, в очередности от первого преобразовательного блока 1, второй блок 17 разъединения обратной линии, блок 18 прерывания обратной линии, а также третий блок разъединения обратной линии, причем здесь, в порядке пояснения, следует упомянуть, что в настоящем описании под понятием «блок прерывания» понимается устройство для включения токоведущего проводника сильного тока. Первая обратная линия 12 своим концом, выходящим из третьего блока 19 разъединения обратной линии, соединена с заземляющим электродом 20.

Соответственно к второму преобразовательному блоку 4 подключены вторая магистральная линия 21 и вторая обратная линия 22, в которые может вводиться постоянное напряжение, выработанное вторым преобразовательным блоком 4. Во вторую магистральную линию 21 включен блок 23 разъединения магистральной линии, с помощью которого вторая магистральная линия 21 со своим отводом является прерываемой от второго преобразовательного блока 4. Соответственно во вторую обратную линию 22 включен первый блок 24 разъединения обратной линии, с помощью которого вторая обратная линия 22 со своим отводом является прерываемой от второго преобразовательного блока 4.

На противоположной второму преобразовательному блоку 4 стороне блока 23 разъединения магистральной линии, размещенного во второй магистральной линии 21, и первого блока 24 разъединения обратной линии, размещенного во второй обратной линии 22, вторая шунтирующая линия 25 соединяет вторую магистральную линию 21 и вторую обратную линию 22, причем во вторую шунтирующую линию 25 включен блок 26 разъединения шунтирующей линии, с помощью которого вторая шунтирующая линия 25 может прерываться.

На противоположной первому блоку 24 разъединения обратной линии стороне вывода второй шунтирующей линии 25 к второй обратной линии 22 подсоединены, в очередности от второго преобразовательного блока 4, второй блок 27 разъединения обратной линии, блок 28 прерывания обратной линии, а также третий блок 29 разъединения обратной линии. Вторая обратная линия 22 своим концом, выходящим из третьего блока 29 разъединения обратной линии, соединена с заземляющим электродом 30.

Кроме того, из фиг.1 видно, что между первыми блоками 14, 24 разъединения обратной линии и вторыми блоками 17, 27 разъединения обратной линии подсоединена полюсная линия 31, соединяющая первую обратную линию 12 и вторую обратную линию 22. В полюсную линию включен блок 32 прерывания полюсной линии, который может включаться не под напряжением с обеих сторон с помощью первого блока 33 разъединения полюсной линии и второго блока 34 разъединения полюсной линии. Между блоком 32 прерывания полюсной линии и блоком 33, 34 разъединения полюсной линии, в конфигурации по фиг.1 первого блока 33 разъединения полюсной линии, включена линия 35 заземления, которая соединяет полюсную линию 31 через быстродействующий блок 36 включения заземления с электродом 37 экстренного заземления.

Наконец, между обратными линиями 12, 22 на противоположных блокам 18, 28 прерывания обратной линии сторонах третьих блоков 19, 29 разъединения обратной линии, для шунтирования по потребности участков обратной линии 12, 22 между вторым блоком 17, 27 разъединения обратной линии, блоком 18, 28 прерывания обратной линии и третьим блоком 19, 29 разъединения обратной линии подсоединена соединительная линия 38, которая с возможностью прерывания с помощью блока 39 разъединения соединительной линии и для шунтирования соединительной линии 38 является замыкаемой проводящим образом.

Для полноты описания следует упомянуть, что в или на различных линиях 11, 12, 21, 22, 31, 35 представленного на фиг.1 устройства в местах, очевидных как целесообразные для специалиста в данной области техники, размещаются блоки 40 измерения тока и блоки 41 измерения напряжения.

Далее поясняются типовые режимы работы соответствующего изобретению устройства, причем для блоков разъединения, а также блоков прерывания полностью зачерненные символы представляют переключенное проводящее состояние, а только обрамленные черным контуром и внутри белые символы представляют разомкнутое непроводящее состояние.

На фиг.2 показана схема по фиг.1 в биполярном режиме работы соответствующего изобретению устройства со всеми токоведущими, работающими магистральными линиями 11, 21 и с обеими работающими обратными линиями 12, 22. В этом режиме работы, кроме блоков 16, 26 разъединения шунтирующей линии, блока 39 разъединения соединительной линии и, как правило, только в экстренном случае переводимого в проводящее состояние быстродействующего блока 36 включения заземления, которые включены в непроводящем состоянии, все блоки 13, 14, 17, 19, 23, 24, 27, 29, 33, 34 разъединения и блоки 18, 28, 32 прерывания включены в проводящем состоянии. В этом режиме регулирования магистральные линии разблокированы, и активные обратные линии 12, 22 связаны друг с другом через подключенную полюсную линию 31. Таким образом, обе обратные линии, по сравнению с протекающими в магистральных линиях 11, 21 сильными токами с высоким напряжением, при типовой полной мощности в несколько сотен МВт, могут проводить сравнительно незначительные уравнительные токи.

На фиг.3 показана схема по фиг.1 в монополярном режиме работы соответствующего изобретению устройства с одной работающей магистральной линией 11, 21, в данном случае первой магистральной линией 11, и с двумя работающими обратными линиями 12, 22. В этом режиме работы блоки 16, 26 разъединения шунтирующей линии, второй блок 23 разъединения магистральной линии, переключающий в проводящее состояние вторую магистральную линию 21, первый блок 24 разъединения обратной линии, переключающий в проводящее состояние вторую обратную линию 22, быстродействующий блок 36 включения заземления и блок 39 разъединения соединительной линии включены в непроводящем состоянии, в то время как остальные блоки 13, 14, 17, 19, 27, 29, 33, 34 разъединения и блоки 18, 28, 32 прерывания включены в проводящем состоянии. Монополярный режим работы с обеими работающими обратными линиями 12, 22 будет вводиться в случае отключения одной магистральной линии 11, 21, в данном случае второй магистральной линии 21, чтобы и в этом режиме работы достичь возможного оптимального вывода уравнительных токов.

На фиг.4 показана схема по фиг.1 в монополярном режиме работы соответствующего изобретению устройства с единственной работающей магистральной линией 11, 21, в данном случае первой магистральной линией 11, и с единственной работающей обратной линией 12, 22, в данном случае первой обратной линией 12. В этом режиме работы блок 13 разъединения магистральной линии, переключающий в проводящее состояние первую магистральную линию 11, блоки 14, 17, 19 разъединения, переключающие в проводящее состояние первую обратную линию 12, блок 18 прерывания обратной линии включены в проводящем состоянии, как и первый блок 33 прерывания полюсной линии, для подключения, при необходимости, быстродействующего блока 36 включения заземления, в то время как остальные блоки 16, 23, 24, 26, 27, 29, 34, 39 разъединения, а также остальные блоки 28, 32 прерывания, включая быстродействующий блок 36 включения заземления, включены в непроводящем состоянии. Из фиг.4 видно, что, таким образом, и в случае необходимости отключения обратной линии 12, 22 может поддерживаться монополярный режим. Кроме того, из фиг.4 можно видеть, что и при отключении обратной линии 12, 22 также может поддерживаться биполярный рабочий режим с токоведущими магистральными линиями 11, 21, при котором другая обратная линия 12, 22 включена в проводящем состоянии для обеих магистральных линий 11, 21.

На фиг.5 показана схема по фиг.1 в монополярном режиме работы соответствующего изобретению устройства с единственной работающей магистральной линией 11, 21, в данном случае первой магистральной линией 11, и с отключенными обратными линиями 12, 22, причем вторая магистральная линия 21 включена как обратная линия для первой магистральной линии 11, и линия 35 заземления включена как вспомогательная линия для заземления уравнительных токов. В этом режиме работы блок 13 разъединения магистральной линии, переключающий в проводящее состояние первую магистральную линию 11, первый блок 14 разъединения обратной линии, переключающий в проводящее состояние от первой обратной линии 12 до второго блока 17 разъединения обратной линии, блоки 33, 34 разъединения полюсной линии, а также блок 26 разъединения шунтирующей линии, переводящий в проводящее состояние вторую шунтирующую линию 25, включены в проводящее состояние, в то время как остальные блоки 16, 17, 19, 23, 24, 27, 29 39 разъединения, а также блоки 18, 28 прерывания обратной линии включены в непроводящее состояние. В этом режиме работы быстродействующий блок 36 включения заземления из соображений безопасности для первого преобразовательного блока 1 включен в проводящем состоянии.

Кроме того, из рассмотрения приведенных выше вариантов выполнения для специалиста в данной области техники должно быть понятно, что на основе размещения блоков 13, 14, 16, 17, 19, 23, 24, 27, 29, 33, 34, 39 разъединения целевые определенные рабочие зоны соответствующего изобретению устройства можно переключать не под напряжением, чтобы проводить работы по техническому обслуживанию. В этой связи особенно целесообразно, что представленное на фиг.1 устройство свободно от пересечений потенциально находящихся под высоким напряжением линий 11, 12, 15, 21, 22, 25, 31, 38, что существенно снижает опасность критических ситуаций, особенно при работах по техническому обслуживанию.

1. Устройство для передачи постоянного тока высокого напряжения с первым преобразовательным блоком (1) и со вторым преобразовательным блоком (4), которые соответственно подключены к магистральной линии (11, 21) и к обратной линии (12, 22), отличающееся тем, что каждый преобразовательный блок (1, 4) подключен к отдельной независимой обратной линии (12, 22), и что обратные линии (12, 22) соединены между собой через полюсную линию (31), причем полюсная линия (31) может прерываться с помощью блока (32) прерывания полюсной линии.

2. Устройство по п.1, отличающееся тем, что к полюсной линии (31) подключена линия (35) заземления, в которой размещен быстродействующий блок (36) переключения заземления для быстрого соединения полюсной линии (31) с электродом (37) экстренного заземления.

3. Устройство по п.2, отличающееся тем, что с обеих сторон вывода линии (35) заземления и блока (32) прерывания полюсной линии размещен соответствующий блок (33, 34) разъединения полюсной линии.

4. Устройство по любому из пп.1-3, отличающееся тем, что магистральные линии (11, 21) и обратные линии (12, 22) каждого преобразовательного блока (1, 4) соединены друг с другом через шунтирующую линию (15, 25), причем каждая шунтирующая линия (15, 25) является прерываемой посредством блока (16, 26) разъединения шунтирующей линии.

5. Устройство по любому из пп.1-3, отличающееся тем, что между выводом полюсной линии (31) и выводом соединительной линии (38) в каждой обратной линии (12, 22) размещен блок (18, 28) прерывания обратной линии, причем каждый блок (18, 28) прерывания обратной линии может разъединяться посредством размещенных с обеих сторон блоков (17, 19; 27, 29) разъединения обратной линии.

6. Устройство по п.5, отличающееся тем, что предусмотрена соединительная линия (38), прерываемая с помощью блока (39) разъединения соединительной линии, которая подсоединена к обратным линиям (12, 22) на противоположных преобразовательным блокам (1,4) сторонах блоков (19, 29) разъединения обратной линии, противоположных преобразовательным блокам (1, 4).

7. Устройство по п.4, отличающееся тем, что между выводом полюсной линии (31) и выводом соединительной линии (38) в каждой обратной линии (12, 22) размещен блок (18, 28) прерывания обратной линии, причем каждый блок (18, 28) прерывания обратной линии может разъединяться посредством размещенных с обеих сторон блоков (17, 19; 27, 29) разъединения обратной линии.

8. Устройство по п.7, отличающееся тем, что предусмотрена соединительная линия (38), прерываемая с помощью блока (39) разъединения соединительной линии, которая подсоединена к обратным линиям (12, 22) на противоположных преобразовательным блокам (1, 4) сторонах блоков (19, 29) разъединения обратной линии, противоположных преобразовательным блокам (1, 4).



 

Похожие патенты:

Изобретение относится к области электротехники и может быть использовано для управления преобразовательными подстанциями в высоковольтной установке постоянного тока.

Изобретение относится к области электротехники и может быть использовано для электропитания и управления электрическим оборудованием летательного аппарата. .

Изобретение относится к области электротехники и может быть использовано преимущественно в мощных электроприводах, применяемых в средневольтных (6 35 кВ) трехфазных электрических сетях.

Изобретение относится к устройству для высоковольтной электропередачи постоянного тока с терминалом подключения питания для подключения питающей энергией сети переменного тока и терминалом подключения потребителя для подключения многофазного потребителя, причем после терминала подключения питания подключен выпрямитель, который через содержащую сглаживающее средство промежуточную цепь постоянного тока соединен с инвертором, который на стороне переменного тока подсоединен к терминалу подключения потребителя, причем выпрямитель и инвертор содержат тиристорные вентили, и управляющий блок отпирает тиристорные вентили инвертора в зависимости от тактового сигнала.

Изобретение относится к области электротехники и может быть использовано для энергоснабжения потребителей. .

Изобретение относится к области электротехники и может быть использовано в энергоснабжающих установках, подающих энергию токоприемникам, расположенным вдали от берега и под поверхностью моря. Техническим результатом является повышение эффективности подачи электроэнергии, надежности/технологичности, коэффициента полезного действия и удельной мощности. Подводная энергоснабжающая установка (10) содержит набор сборочных элементов (12), (13) модульных преобразователей электроэнергии, которые расположены как на стороне источника (20) питания, так и на стороне подводного токоприемника (30), объединены и взаимосвязаны с обеспечением удовлетворения требованиям расширения участка эксплуатации и конфигураций токоприемников. Указанная энергоснабжающая установка (10) содержит линию/шину (14) передачи, которая выполнена с возможностью переноса электроэнергии постоянного тока высокого или среднего напряжения от расположенных на берегу средств обеспечения или расположенного на верхней стороне источника (20) питания к набору подводных модулей (18) токоприемника. Конфигурация многоуровневого модульного преобразователя электроэнергии на подводной стороне подводной энергоснабжающей установки (10) симметрична конфигурации многоуровневого модульного преобразователя электроэнергии на береговой/верхней стороне подводной энергоснабжающей установки (10). 9 з.п. ф-лы, 10 ил.

Изобретение относится к области электротехники и может быть использовано для управления реактивной мощностью в системах питания таких устройств, как землеройные машины различного типа, используемые для добычи полезных ископаемых. Техническим результатом является улучшение массогабаритных показателей, повышение коэффициента мощности и качества электроэнергии. Определенные примерные варианты осуществления могут обеспечить систему, машину, устройство, изготовление, схему и/или пользовательский интерфейс, приспособленные для, и/или способ и/или машиночитаемый носитель, содержащий машино-реализуемые инструкции для действий, которые могут содержать, посредством предопределенного информационного устройства, для предопределенной землеройной машины, содержащей множество активных входных каскадов, причем каждый активный входной каскад электрически связан с сетью АС электропитания упомянутой землеройной машины, каждый активный входной каскад приспособлен, чтобы обеспечивать DC мощность в DC шину, упомянутая DC шина электрически связана с множеством инверторов, каждый инвертор приспособлен для подачи АС мощности на по меньшей мере один работающий двигатель, независимым образом управление реактивной мощностью, формируемой каждым активным входным каскадом.2 н. и 13 з.п. ф-лы, 14 ил.

Вставка постоянного тока относится к области электроэнергетики. Технический результат изобретения - повышение надежности, пропускной способности и повышение к.п.д. Устройство осуществляет обмен электроэнергией между энергосистемами (1) и (2). Инверторы напряжения с каждой стороны образуются диодными мостами (7) и (8) и мостами (11, 12) встречно параллельных запираемых вентилей. В промежутки времени односторонней передачи энергии для производства профилактических работ или снижения потерь электроэнергии управляемые мосты (11) или (12) могут отключаться. 1 з.п. ф-лы, 1 ил.

Изобретение относится к преобразовательной технике. Для того чтобы предоставить устройство (1) для преобразования электрического параметра в области передачи и распределения электроэнергии с преобразователем (2), переключаемым между сетью (11) переменного напряжения и контуром (7) постоянного напряжения, который имеет силовые полупроводниковые вентили (3), которые располагаются между выводом (4) переменного напряжения и выводом (5, 6) постоянного напряжения, причем каждый силовой полупроводниковый вентиль (3) включает в себя последовательную схему из биполярных подмодулей (8), которые имеют, соответственно, накопитель энергии и параллельно накопителю энергии расположенную силовую полупроводниковую схему, и с блоком (9) сетевого подключения, соединенным с выводом (4) переменного напряжения для соединения с сетью (11) переменного напряжения, с помощью которого обеспечивается простое, эффективное и экономичное симметрирование напряжений в контуре постоянного напряжения по отношению к потенциалу земли, предложен реактор (14) с нулевой точкой, соединенный с точкой (13) потенциала между блоком (9) сетевого подключения и преобразователем (2), имеющий дроссельные катушки (15), соединенные с заземленной нулевой точкой (16), причем дроссельные катушки (15) выполнены таким образом, что они для переменного тока с частотой основного колебания сети (11) переменного напряжения представляют токовый путь с высоким импедансом относительно потенциала земли, а для постоянного тока - токовый путь с низким импедансом относительно потенциала земли. Технический результат - симметрирование напряжений в контуре постоянного тока по отношению к потенциалу земли. 10 з.п. ф-лы, 1 ил.

В изобретении предлагается система передачи и распределения электроэнергии, которая подходит для питания подводных электрических нагрузок. Система содержит первичный dc передающий кабель (8), который может быть подключен к береговому AC/DC преобразовательному модулю (2). Подводный конец кабеля (8) подключен к первичному подводному силовому распределительному блоку (10), который содержит DC/DC преобразовательный модуль (14), имеющий модульную топологию с группами взаимосвязанных DC/DC преобразовательных узлов, и первичную dc распределительную сеть (16). Вторичные dc передающие кабели (24) и связанные с ними автоматические выключатели (26) обеспечивают подключение первичного подводного силового распределительного блока (10) ко вторичным подводным силовым распределительным блокам (18а, 18b). Каждый подводный силовой распределительный блок (18а, 18b) содержит DC/DC преобразовательный модуль (20а), имеющий модульную топологию с группами взаимосвязанных DC/DC преобразовательных узлов. Соответствующие вторичные dc распределительные сети (22а, 22b) используют для подачи энергии на одну или несколько подводных электрических нагрузок. Технический результат - возможность уменьшения размера наземных компонентов. 11 з.п. ф-лы, 3 ил.

Изобретение относится к области электротехники. Для достижения технического результата - лучшего использования связи энергосистем на постоянном токе, она снабжается полюсными закорачивающими выключателями, позволяющими использовать тиристорные мосты в качестве регуляторов реактивной мощности при разрыве связи. 4 з.п. ф-лы, 5 ил.

Изобретение относится к области электротехники и может быть использовано в энергосистемах. Техническим результатом является повышение надежности и упрощение. В электромеханической вставке для связи энергосистем машины (5 и 6) двойного питания подключены к разным энергосистемам (1 и 2) и связаны роторами с преобразователями (9 и 10) через пять колец 11, вместо обычно используемых шести колец. 1 ил.

Изобретение относится к области электротехники и может быть использовано в оборудовании для передачи электропитания к подводным нагрузкам, расположенным далеко от надводных частей платформы или от берега, требующим передачи большой мощности. Устройство для стабильной подводной передачи электропитания для приведения в действие высокоскоростных двигателей или иных подводных нагрузок, например насосы, компрессоры и системы управления, представляет собой вращающееся устройство шагового изменения частоты, конкретнее - вращающееся устройство повышения или понижения частоты; оно содержит: двигатель и генератор, функционально соединенные так, что двигатель приводит в действие генератор; по меньшей мере один сосуд, наполненный газом и/или жидкостью, в котором находится по меньшей мере что-то одно из двигателя и генератора, при этом протяженность кабеля является длинной, что означает - достаточно длинной, чтобы вызвать проблемы из-за эффекта Ферранти при частотах и уровнях мощности, подходящих для двигателей подводных насосов и компрессоров. Устройство через протяженный кабель получает на входе электропитание при достаточно низкой частоте, чтобы иметь стабильную передачу. Устройство, функционально соединенное с подводным двигателем, выдает на выходе частоту электрического тока, силу тока и напряжение, подходящие для работы подключенных двигателей. Система для подводного повышения давления углеводородной текучей среды или другой текучей среды содержит это устройство. 2 н. и 13 з.п. ф-лы, 7 ил., 4 табл.

Использование: в области электротехники. Технический результат – повышение стабильности и надежности многотерминальной системы электропередачи. Согласно способу если главная станция управления напряжением постоянного тока прекращает работу, подчиненная станция управления напряжением постоянного тока перенимает управление напряжением постоянного тока, а остальные преобразовательные станции продолжают работать в первоначальных режимах управления. Передача управления содержит следующие этапы: при условии, что межстанционные средства связи действуют, главная станция управления отправляет на подчиненную станцию сигнал о прекращении работы посредством межстанционных средств связи, и когда подчиненная станция получает данные о том, что главная станция управления напряжением постоянного тока прекратила работу, подчиненная станция переключается с текущего режима управления в режим управления напряжением постоянного тока; и при условии, что межстанционные средства связи отсутствуют или неисправны, подчиненная станция получает данные об изменении напряжения постоянного тока в многотерминальной системе постоянного тока, и если разность значения напряжения постоянного тока и его номинального значения превышает определенное пороговое значение, подчиненная станция переключается с текущего режима управления в режим управления напряжением постоянного тока. 8 з.п. ф-лы, 4 ил.
Наверх