Способ обработки поверхности полимерных мембранных материалов

Изобретение относится к области техники поверхностного модифицирования полимерных мембранных материалов Поверхность полимерных мембранных материалов после обработки газообразной смесью, содержащей фтор, обрабатывают смесью из газообразных окиси азота NO и/или NO2 и инертного разбавителя, после чего поверхность обрабатывают водным раствором аммиака и обдувают. Изобретение позволяет быстро удалять фтористый водород, адсорбированный на поверхности и в объеме полимерного мембранного материала после фторирования. Кроме того, достигается сохранение сплошности поверхности и отсутствие механических повреждений на поверхности, и сохранение селективность газоразделения после хранения мембран. 1 з.п. ф-лы, 2 ил.

 

Изобретение относится к области техники поверхностного модифицирования полимерных мембранных материалов, полимерных мембран различного вида (гомогенных, композитных, половолоконных и т.д.) и изготовленных из них газоразделительных устройств.

Известен способ модифицирования полимерных мембран [US 4759776, July 26, 1988; US 4657564, April 14, 1987], в котором модифицирование полимерных производных политриалкилсилилпропина и политриалкилгермилпропина и мембран на их основе происходит в потоке фторсодержащего газа при атмосферном давлении. Предлагается использовать модифицированные мембраны (гомогенные и гетерогенные плоские мембраны и мембраны, состоящие из полиолефиновой или полисульфоновой пористой подложки, покрытой с поверхности вышеупомянутыми полимерами) для разделения смеси газов O2/N2, Не/СН4, H2/CH4, Н2/СО, СО2/CH4, CO2/N2, H2/N2 и He/N2.

Известен способ модифицирования полимерных мембран на основе ароматических полиимидов [Pat. US №5112941, May 12, 1992], в котором модифицирование плоских мембран в виде пленок происходит при воздействии смесей фтора с HF, CF4 с целью улучшения селективности разделения смесей O2/N2, H2/CH4 и CO2/CH4.

Известен способ модифицирования полимерных мембран [Pat. US №4828585, May 9, 1989] на основе полисульфона, полистирола, полиарилата, поликарбоната, этилцеллюлозы, стирол-акрилонитрильного сополимера, АБС, и поли (4-виниланизол-4-винилпиридина), в котором модифицирование плоских гомогенных и композитных волокон и половолоконных мембран происходит при воздействии фтора либо его смесей с диоксидом серы с целью улучшения селективности разделения смесей O2/N2, N2/CH4 и СО2/CH4.

Известен способ химической модификации полимерной газоразделительной мембраны [SU 1776194, B01D 71/32, Бюл. №42, 1992 г.], в котором мембраны из сополимера винилиденфторида с тетрафторэтиленом или гексафторпропиленом обрабатывают газообразной смесью. В качестве фторсодержащего агента используют летучий фторид тяжелого металла, выбранный из группы MoF6, WF6, UF6, VF5 и обработку осуществляют при содержании последнего 0-80 об.% и его давлении до 0,5 ата.

Известен способ модифицирования мембран для разделения смеси газов [SU 1754191, B01D 71/32, Бюл. №30, 1992 г.] в виде плоских гомогенных пленок или полых волокон па основе поли(4-метилпентена-1) смесью F2-инертный разбавитель в вакуумном реакторе закрытого типа для улучшения селективности газоразделения газовых смесей CO2/H2S.

Известен способ модифицирования полимерных мембран в виде плоских гомогенных пленок поливинилтриметилсилана и полых волокон на основе полиимида Матримид® 5218 [D.A.Syrtsova, А.Р.Kharitonov, V.V.Teplyakov, G.H.Koops, Improving gas separation properties of polymeric membranes based on glassy polymers by gas phase fluorination. Desalination, 163 (2004) 273-279; A.Р.Kharitonov. Direct fluorination of polymers. Nova Science Publishers Inc. N.Y., 2008], принятый за прототип. Согласно этому способу модифицирование мембран происходит при воздействии смесей F2, He и О2 с целью улучшения селективности разделения смесей He/CH4, He/N2 и CO2/CH4. Для исследования газотранспортных свойств полых полиимидных волокон использовались лабораторные имитации мембранных модулей, состоящие из 1-го до 3-х полых полиимидных волокон

Общим недостатком всех вышеупомянутых способов является то, что при фторировании полимерных мембран выделяется высокотоксичный фтористый водород (HF). Для удаления его из полимерной мембраны необходимы многократные чередующиеся циклы продувки реактора азотом и вакуумирования в течение не менее 1 часа. Однако даже после такой обработки около поверхности фторированной мембраны ощущается запах фтористого водорода. Кроме того, при фторировании полимерных мембран во фторированном слое формируются долгоживущие перекисные и фторрадикалы (см. фиг.1, кривая 1) в концентрациях до 1019-1021 радикалов на один грамм фторированного полимерного слоя, заметные концентрации которых в некоторых полимерах (например, в полиимиде) наблюдаются даже через 100 часов. Эти радикалы участвуют в медленных пост-реакциях, которые приводят к разрывам полимерных цепей и к образованию сшивок, что со временем приводит к деструкции и нарушению сплошности фторированного газоразделительного слоя на поверхности мембраны (см. фиг.2, а и 2, б) и резкому падению селективности газоразделения мембраны до величин, близких к 1.

Цель изобретения - быстрая нейтрализация фтористого водорода, адсорбированного на поверхности и растворенного в объеме полимерных мембран любого вида (плоские гомогенные и композитные, полые волокна), обработанных фторсодержащими газовыми смесями, сохранение при длительном хранении сплошности поверхности мембран и недопущение появления механических повреждений на поверхности мембран, сохраняя таким образом селективность их газоразделения.

Поставленная задача достигается тем, после обработки поверхности полимерных мембранных материалов, включающей обработку газообразной смесью фтора от 1 до 60 об.% с инертным разбавителем, поверхности материалов обрабатывают газовой смесью, содержащей оксиды азота, выбранные из NO и/или NO2, в количестве не менее 0,5 об.%, и инертный разбавитель, после чего поверхности обрабатывают водным раствором аммиака с концентрацией от 0,5% до насыщенного раствора в течение 1-3 минут и обдувают, причем в качестве инертного разбавителя используют азот, гелий, аргон, двуокись углерода, воздух или их смесь.

Результаты исследований подтверждаются графически и на фотографиях: на фиг.1 показан спектр электронного парамагнитного резонанса (ЭПР) пленки полиимида Матримид 5218, обработанной фтором (кривая 1) и ЭПР-спектр этой же пленки, обработанной газообразной окисью азота NO в течение 2-х минут (кривая 2), на фиг.2 показаны электронно-микрофотографические изображения поверхности полого волокна из полиимида Матримид 5218: а - исходное волокно, б - фторированное волокно без обработки водным раствором аммиака после одного года хранения на воздухе, в - фторированное и обработанное раствором аммиака волокно после одного года хранения на воздухе.

Экспериментально было установлено, что кратковременная (в течение не более 2-х минут) обработка фторированных полимерных пленок окислами азота NO и NO2 приводит к полному разрушению долгоживущих радикалов (см. фиг.1, кривая 2). Поэтому долгоживущие радикалы не будут участвовать в пост-реакциях и не будут приводить к деструктуризации и нарушению сплошности фторированного разделительного слоя на поверхности мембраны или полого волокна. Проведенные электронно-микроскопические исследования показывают, что на поверхности полого волокна Матримид 5218, фторированного и обработанного газовой смесью NO/NH3, после одного года хранения на воздухе нет видимых нарушений сплошности фторированного газоразделительного слоя (см. фиг.2, в).

Для быстрой нейтрализации фтористого водорода, адсорбированного на поверхности и растворенного в объеме полимерной мембраны, последнюю обрабатывают водным раствором аммиака с последующей сушкой, например, теплым воздухом. Фтористый водород очень быстро реагируют с аммиаком с образованием твердого нетоксичного NH4F в виде мелкодисперсной наноразмерной пыли по уравнению

HF + NH3 → NH4F.

Так как аммиак состоит из неполярных молекул, то он очень слабо адсорбируется на полимерной поверхности и легко удаляется при обдувании.

Для экспериментального подтверждения предлагаемого способа были использованы следующие полимерные мембранные материалы: отдельные плоские асимметричные мембраны из поливинилтриметалсилана (ПВТМС), полые асимметричные волокна из полиимида Матримид® 5218 и полые асимметричные волокна из поли(4-метилпентена-1) (ПМП). Обработке подвергались как сами полимерные мембранные материалы, упомянутые выше, так и изготовленные мембранные газоразделительные устройства, в которых находились пленки ПВТМС общей площадью 1 м2 и по 100-200 полых волокон длиной 30 см каждое в виде распушенного жгута.

Опыт 1 - фторирование способом по прототипу. Асимметричная мембрана из ПВТМС площадью 100 см2 была обработана смесью 33% F2 + 67% He при давлении 0,5 ати в течение 1 часа, после чего мембрана продувалась азотом, гелием, аргоном, кислородом, двуокисью углерода, сжатым воздухом или их смесью в течение 5 минут.

Мембрана обладала резким запахом фтористого водорода, адсорбированного на ее поверхности.

Опыт 1, а - фторирование по предлагаемому способу. Фторировали асимметричную мембрану из ПВТМС площадью 100 см2. Провели три опыта, режимы обработки приведены в таблице 1.

Таблица 1
Режимы обработки мембраны из ПВТМС
Фторирующая смесь* Азотосодержащая смесь Раствор аммиака
Состав, об.% Давление, ати Состав, об.% Время обработки, мин Концентра-
ция, %
Время обработки, мин
1% F2 + 99% Ar 0,3 5% NO2 + 95% Не 2 5 1
33% F2 + 67% He 0,5 0,5% NO + 99,5% Ar 2 0,5 3
60% F2 + 40% N2 0,1 40% NO + 40% NO2 + 20% CO2 1 60 0,5
Примечание. * - время обработки 1 ч

После обработки азотосодержащей смесью мембраны вакуумировали в течение 5 минут или продували азотом, гелием, аргоном, кислородом, двуокисью углерода, сжатым воздухом или их смесью в течение 5 минут. После обработки раствором аммиака образцы просушивали теплым воздухом.

После каждого опыта запах фтористого водорода у мембраны полностью отсутствовал. Проведенное через 1 год электронно-микроскопическое исследование поверхности показало отсутствие дефектов на поверхности мембраны.

Опыт 2 - фторирование способом по прототипу. Мембранное газоразделительное устройство, в котором находились 200 полых волокон полиимида Матримид 5218 длиной 30 см каждое в виде распушенного жгута, было обработано смесью 10% F2 + 90% He при давлении 0,5 ати в течение 10 минут. Затем устройство продувалось азотом, гелием, аргоном, кислородом, двуокисью углерода, сжатым воздухом или их смесью в течение 5 минут.

Волокна газоразделительного устройства обладали резким запахом фтористого водорода, адсорбированного на их поверхности.

Опыт 2, а - фторирование по предлагаемому способу. Фторировали мембранное газоразделительное устройство, в котором находились 200 полых волокон полиимида Матримид 5218 длиной 30 см каждое в виде распушенного жгута. Провели три опыта, режимы обработки приведены в таблице 2.

Таблица 2
Режимы обработки мембраны из полиимида Матримид 5218
Фторирующая смесь* Азотосодержащая смесь Раствор аммиака
Состав, об.% Давление, ати Состав, об.% Время обработки, мин Концентрация, % Время обработки, мин
15% F2 + 85% Ar 0,4 20% NO + 80% Не 2 25 1
10% F2 + 90% He 0,5 10% NO + 90% Ar 1 5 2
40% F2 + 60% N2 0,1 10% NO + 30% NO2 + 60% CO2 1 40 0,5
Примечание. * - время обработки 10 мин

После обработки азотосодержащей смесью мембраны вакуумировали в течение 5 минут или продували азотом, гелием, аргоном, кислородом, двуокисью углерода, сжатым воздухом или их смесью в течение 5 минут. После обработки раствором аммиака образцы просушивали теплым воздухом.

После каждого опыта запах фтористого водорода у волокон полиимида полностью отсутствовал. Проведенное через 1 год электронно-микроскопическое исследование поверхности волокон показало отсутствие дефектов на их поверхности (фиг.2, в).

Опыт 3 - фторирование способом по прототипу. Мембранное газоразделительное устройство, в котором находились 100 полых волокон ПМП длиной 30 см каждое в виде распушенного жгута, было обработано смесью 10% F2 + 90% He при давлении 0,5 ати в течение 10 минут. После этого устройство продувалось азотом, гелием, аргоном, кислородом, двуокисью углерода, сжатым воздухом или их смесью в течение 5 минут.

Волокна газоразделительного устройства обладали резким запахом фтористого водорода, адсорбированного на их поверхности.

Опыт 3, а - фторирование предлагаемым способом. Фторировали мембранное газоразделительное устройство, в котором находились 100 полых волокон ПМП длиной 30 см каждое в виде распушенного жгута. Провели три опыта, режимы обработки приведены в таблице 3.

Таблица 3
Режимы обработки волокон ПМП
Фторирующая смесь* Азотосодержащая смесь Раствор аммиака
Состав, об.% Давление, ати Состав, об.% Время обработки, мин Концентрация, % Время обработки, мин
3% F2 + 97% Ar 0,2 25% NO2 + 75% Не 2 3 1
10% F2 + 90% He 0,5 15% NO + 85% Ar 2 15 3
50% F2 + 50% N2 0,1 50% NO + 50% NO2 1 80 0,5
Примечание. * - время обработки 10 мин

После обработки азотосодержащей смесью мембраны вакуумировали в течение 5 минут или продували азотом, гелием, аргоном, кислородом, двуокисью углерода, сжатым воздухом или их смесью в течение 5 минут. После обработки раствором аммиака образцы просушивали теплым воздухом.

После каждого опыта запах фтористого водорода у волокон ПМП полностью отсутствовал. Проведенное через 1 год электронно-микроскопическое исследование поверхности волокон показало отсутствие дефектов на их поверхности.

Таким образом, проведенные эксперименты показали, что полимерные мембранные материалы различного вида (гомогенные, композитные, половолоконные и т.д.), фторированные газообразной смесью фтора с инертными разбавителями, после дополнительной обработки поверхности материалов смесью из газообразных оксидов азота, выбранных из NO и/или NO2, с инертным разбавителем и водным раствором аммиака быстро освобождаются от фтористого водорода, адсорбированного на поверхности и растворенного в объеме полимерного мембранного материала. Кроме того, после такой обработки достигается сохранение сплошности и недопущение появления механических повреждений на поверхности полимерных мембранных материалов в течение длительного времени, сохраняя таким образом селективность газоразделения мембран.

1. Способ обработки поверхности полимерных мембранных материалов, включающий обработку газообразной смесью фтора от 1 до 60 об.% с инертным разбавителем, отличающийся тем, что после обработки газообразной смесью фтора с инертным разбавителем поверхности материалов обрабатывают газовой смесью, содержащей оксиды азота, выбранные из NO и/или NO2, в количестве не менее 0,5 об.%, и инертный разбавитель, после чего поверхности обрабатывают водным раствором аммиака с концентрацией от 0,5% до насыщенного раствора в течение 1-3 мин и обдувают.

2. Способ по п.1, отличающийся тем, что в качестве инертного разбавителя используют азот, гелий, аргон, двуокись углерода, воздух или их смесь.



 

Похожие патенты:

Изобретение относится к области техники поверхностного модифицирования полимерных мембранных материалов, полимерных мембран различного вида (гомогенных, композитных, половолоконных и т.д.) и изготовленных из них газоразделительных устройств с целью придания им улучшенных газоразделительных свойств.

Изобретение относится к композиционным мембранным материалам для очистки жидкости, в частности питьевой воды. .

Изобретение относится к технологии производства армированных мембран, в частности мембран для ультра- и микрофильтрации, используемых для осуществления барометрических процессов разделения растворов и суспензий.

Изобретение относится к технологии получения разделительных микропористых мембран, которые могут быть использованы для отделения таких молекул, как водород, азот, аммиак, вода, друг от друга и/или от малых органических молекул, таких как алканы, алканолы, простые эфиры и кетоны.

Изобретение относится к области синтеза палладиевых нанокристаллических катализаторов в виде мембран. .
Изобретение относится к способу получения анионообменных мембран с улучшенными массообменными характеристиками, применяемых в электродиализных аппаратах для переработки различных растворов, получения высокочистой воды и регулирования рН обрабатываемого раствора.
Изобретение относится к мембранным процессам выделения органических соединений из растворов. .

Изобретение относится к области получения фильтровальных материалов и может быть использовано в медицине, фармацевтике, биотехнологии, электронной, химической и пищевой промышленности.
Изобретение относится к способу получения микрофильтрационной положительно заряженной мембраны, которая может быть использована при разделении растворов в микробиологической, биохимической и фармацевтической промышленности, а также при очистке сточных вод.

Изобретение относится к области композиционных мембран, предназначенных для использования в контакторах газ-жидкость, в которых реализуются процессы абсорбции и/или десорбции газов, и касается композиционной мембраны на основе высокопроницаемых стеклообразных полимеров
Изобретение относится к области мембранных технологий. Способ прогнозирования основан на корреляции газохроматографических характеристик веществ, полученных на колонке с неподвижной жидкой фазой, с транспортными свойствами исследуемой мембраны. Сущность прогнозирования основана на следующем. Процессы разделение жидкостей первапорацией и газохроматографически описываются взаимосвязанными характеристиками в случае физико-химической идентичности полимеров разделительных диффузионных слоев. Для прогнозирования разделительных свойств первапорационной мембраны измеряют времена удерживания исследуемых компонентов на хроматографической колонке, которая имеет неподвижную жидкую фазу, идентичную мембранообразующему полимеру. Рассчитывают значения параметров ε, при этом ε рассчитывают как отношение логарифма времени удерживания к логарифму температуры кипения. По величине полученного параметра судят об возможной эффективности разделения потенциальных смесей органических жидкостей на данном полимерном материале. После приготовления из мембранообразующего полимера неподвижной жидкой фазы газохроматографической колонки проводят изучение соответствующих характеристик заданных пар органических жидкостей. По результатам проведенного эксперимента оценивают целесообразность использования данного полимерного материала для разделении заданных пар жидкостей. Изобретение позволяет прогнозировать селективность растворимых полимеров и их композиций, оптимизировать состав полимерной смеси композиционной мембраны, оценить перспективность использования конкретного мембранообразующего полимерного материала для разделения определенной смеси органических жидкостей. 2 з.п. ф-лы, 2 табл.
Изобретение относится к области мембранной техники. На поверхность гетерогенных ионообменных мембран, выполненных из полиэтилена и диспергированного в нем ионполимера, наносят раствор сульфированного политетрафторэтилена в органическом растворителе. Мембрану предварительно высушивают и обрабатывают «ледяной» уксусной кислотой и в раствор сульфированного политетрафторэтилена вносят «ледяную» кислоту, после чего мембрану подвергают термообработке. Способ позволяет получить механически прочные мембраны, способные устойчиво функционировать в электродиализных аппаратах. 5 табл.

Изобретение относится к способам придания и усовершенствования бактериальной стойкости полимерных полупроницаемых мембран на основе композиционных материалов, используемых в процессах водоочистки и водоподготовки, в частности получения особо чистой воды и питьевой воды из различных источников, включая поверхностные и подземные воды Технический результат: повышение бактерицидных свойств мембраны. Суть изобретения: после получения полимерную полупроницаемую мембрану обрабатывают раствором нитрата или сульфата серебра, меди, цинка, при этом обработку осуществляют вышеуказанными солями, растворенными в смеси воды и муравьиной кислоты при следующем соотношении компонентов (масс.ч.): нитрат или сульфат серебра, меди, цинка - (0,05 - 5,0); муравьиная кислота - (2,0 - 20,0); вода - (75,0 - 97,95), обработку проводят при температуре 40-60°С; после чего проводят промывку и сушку.

Изобретение относится к полупроницаемым мембранам и может быть использовано для ультрафильтрации жидких сред в медицине, биотехнологии, фармацевтике и микробиологии, в частности для фильтрации плазмы крови человека. Трековая мембрана для фильтрации крови выполнена в виде пористой полимерной пленки толщиной 10-30 мкм. При этом 15-35% пор имеют диаметр 0.02-0.07 мкм, 50-60% пор имеют диаметр 0.07-0.1 мкм, 5-10% пор имеют диаметр 0.1-0.13 мкм. Общая плотность пор составляет 0.9·109÷1.1·1010 пор/см2. Изобретение позволяет повысить задерживающую способность трековой мембраны по отношению к липопротеинам низкой плотности в крови человека при сохранении альбуминовой фракции. 1 ил., 3 табл.

Изобретение относится к способам изготовления трековых мембран и может быть использовано для получения мембранных материалов, пригодных для ультрафильтрации жидких сред в медицине, биотехнологии, фармацевтике и микробиологии, а именно мембранных материалов для фильтрации крови. Способ изготовления трековой мембраны для фильтрации крови включает облучение полимерной пленки ускоренными заряженными частицами, ее сенсибилизацию излучением в ультрафиолетовом диапазоне и последовательную обработку облученной пленки травящим щелочным реагентом, раствором полиэтиленимина и раствором поливинилпирролидона. В качестве заряженных частиц используют ионы криптона при плотности облучения 0.9·109÷1.1·1010 ионов/см2. Время экспозиции при сенсибилизации пленки излучением в ультрафиолетовом диапазоне составляет 9-17 минут при интенсивности ультрафиолета А 5.8-12.5 Вт/м2, а ультрафиолета В - 2.6-4.4 Вт/м2. Изобретение позволяет повысить задерживающую способность изготавливаемой трековой мембраны по отношению к липопротеинам низкой плотности в крови человека при сохранении альбуминовой фракции. 4 ил., 6 табл., 3 пр.
Изобретение относится к технологии изготовления композиционных ионообменных мембран, обладающих свойством селективности сорбции или переноса нитрат-аниона. Предложена композиционная ионообменная мембрана, характеризующаяся повышенной подвижностью нитрат-анионов и повышенной константой ионного обмена по отношению к нитрат-аниону. Мембрана содержит ионообменную полимерную матрицу, которая объемно или градиентно модифицирована наночастицами оксида церия. Изобретение обеспечивает эффективное использование полученной мембраны в процессах очистки различных растворов, в том числе жидких продуктов питания, от нитрат-анионов. 2 з.п. ф-лы, 1 табл., 4 пр.
Изобретение относится к области переработки пластических масс при производстве пленок, листов, композиционных материалов для создания мембран, способных к микро- и ультрафильтрации, и может быть использовано в качестве подкровельных материалов, для укрепления и армирования при дорожном строительстве, в упаковке нестандартных грузов. Полимерная диффузионная мембрана состоит из первого и второго слоев, имеет первый слой - армирующий и представляет собой структуру в виде непрерывных каркасных сеток, которые создают ячейки из волокон кристаллического полимерного материала разных размеров, в которых расположен полимерный материал второго слоя, имеющий микропористую структуру с разными свойствами относительно воздухо- и влагопроницаемости. Создание соответствующих структур мембраны происходит при ее производстве методом соэкструзии или другими известными методами производства многослойного комбинированного материала. Изобретение позволяет улучшить эксплуатационные показатели при использовании мембраны. 2 з.п. ф-лы, 2 пр.

Изобретение относится к мембранной технике. Многослойная композитная полимерная сильноосновная мембрана, включающая как минимум два полимерных слоя, первый слой, образующий подложку композитной мембраны, содержит четвертичные аммониевые основания с тремя алкильными заместителями у атома азота и поверхностный слой, содержащий ион-полимер с четвертичными аминами, бидентатно связанными с матрицей двумя связями C-N. Способ получения композитной полимерной мембраны включает обработку мембраны, выполненной из полимера, содержащего сильноосновные четвертичные аммониевые основания с тремя алкильными заместителями у атома азота, раствором щелочи до образования в исходной мембране тонкого гидролизованного слоя, содержащего вторичные и третичные аминогруппы, отмывку мембраны от раствора щелочи водой до нейтрального значения pH, обработку раствором кислоты до полного протонирования вторичных и третичных аминогрупп с последующей обработкой мембраны сополимером акрилонитрила с диметилдиалиламмоний хлоридом до образования в поверхностном слое иммобилизированных четвертичных аминогрупп, бидентатно связанных с матрицей мембраны двумя связями C-N. Технический результат заключается в обеспечении возможности композитной мембраны устойчиво функционировать в электродиализных аппаратах при величине тока, значительно превышающей предельный ток, и при высоких значениях рН обрабатываемого раствора. 2 н.п. ф-лы, 5 табл., 4 ил.

Изобретение относится к химии нанопористых металлорганических координационных полимеров, а именно к композиционному протонпроводящему материалу. Материал имеет состав общей формулы (1-y) CFIM · y Cr-MIL-101, где y - мольное количество Cr-MIL-101, равное 0.05 или 0.1 моль, состоящий из координационного нанопористого металлорганического полимера Cr-MIL-101 состава [Cr3O(H2O)2X(C8H4O4)3], где X=F, ОН, из которого удалены гостевые молекулы терефталевой кислоты и вода, с внедренной в его поры солью трифторметансульфоната имидазолия состава C4H5F3N2O3S (CFIM). Изобретение позволяет получить материал, обладающий высокой протонной проводимостью при низкой влажности рабочей атмосферы в широком диапазоне температур до 230°С. 3 ил., 2 пр.
Наверх