Способ повышения вегетации и жизнестойкости растений

Изобретение относится к области сельского хозяйства, в частности к методам электромагнитного воздействия на растения видимым диапазоном волн. В способе подают электромагнитный световой поток от излучателя. При этом световой поток или его часть поляризуют, смешивают с неполяризованным, если такой имеется, и отражают в направлении растений, например, в течение всего периода вегетации растений. Падающий световой поток частично или полностью направляют в область угла Брюстера. В световом потоке или его части периодически изменяют плотность поляризации от минимальной, например, равной нулю, до максимальной. Период изменения плотности поляризованного излучения устанавливают в зависимости, например, от вида растения. При интенсивности отраженного света не выше пороговой коэффициент преломления в нем пленки отражателя изменяют плавно или дискретно, например, в пределах выбранной расширенной угловой зоны Брюстера. Падающий световой поток предварительно диффундируют, например, тем же отражателем или источником излучения. Способ позволяет повысить вегетацию и жизнестойкость растений, а также уменьшить площадь посева семян. 5 з.п. ф-лы, 2 ил.

 

Изобретение относится к сельскому хозяйству и может быть использовано при выращивании сельхозкультур, например, в оранжереях.

В природе воздействие отраженного от Луны света на биообъекты было отмечено еще в глубокой древности. Точно такое же воздействие оказывает на биообъекты и лазерное излучение. А.Л.Чижевский указал на важность того, что отраженный от поверхности Луны солнечный свет приобретает поляризацию. [1] - Правдивцев В.Л. Эти загадочные зеркала, изд. 3-е, стереотипное. М.: РИЦМДК, 2004 г., стр.135, «От чего бесятся тифозные бациллы …».

Известны способы выращивания растений, при которых для повышения продуктивности растений семена подвергают воздействию магнитного поля (а.с. №913993, МПК A01G 7/04; А01С 1/00 опубл. 23.02.1982 г.), а также вегетирующих растений (патент РФ №2053641, МПК A01G 7/04, А01С 1/00, A01G 1/06, опубл. 10.02.1996 г.).

Недостатком их является недостаточная эффективность.

Существует метод изменения спектрального состава излучателя путем подбора газоразрядных ламп для оранжерей по единому спектру излучения (патент №2172100, A01G 7/04, опубл. 20.08.2001 г.).

Известный метод имеет большую трудоемкость, неэкономичен, мало эффективен.

Известен метод воздействия на биообъекты (патент РФ №2116089, A01G 7/04, А01С 1/00, опубл. 27.07.1998 г.) путем модулирования оптического лазерного излучения нерегулярными аналоговыми комбинациями, спектральные составляющие которых находятся в диапазоне частот 10-4-106 Гц и мощности излучения 10-6-2·10-1 Вт/см2.

Недостатки: сложность организации самого метода, высокая стоимость. Кроме того, предлагаемая система модуляции импульсов неоправданно усложнена и на практике мало применима для облучения растущих растений, например, в оранжереях.

Известен способ воздействия на биообъекты (патент РФ №2148903, МПК A01G 7/04, A01G 33/00, C12N 13/00, опубл. 20.05.2000 г.), позволяющий повысить жизнеспособность и урожайность, например, растений путем воздействия на них низкоинтенсивным электромагнитным излучением миллиметрового диапазона длин волн, например, в течение 10-15 минут с периодичностью 1 раз в неделю.

Недостаток: метод работоспособен при наличии дополнительного источника света (Солнца) или мощных излучателей в оранжереях.

Наиболее близким прототипом является метод, описанный в [2] - Протасова Н.Н. Светокультура как способ выявления потенциальной продуктивности растений (Институт физиологии растений им. К.А.Тимирязева АН СССР). Физиология растений, том 34, вып.4, 1987 г.

В работе исследован способ повышения продуктивности растений путем регулирования интенсивности и спектрального состава излучения.

Недостатки способа: необходимость создания специальных растениеводческих ламп, имеющих высокий КПД и благоприятный для растений спектральный состав, большие электрозатраты, дорогостоящий.

Целью изобретения является усиление вегетации растений (продуктивности) и их жизнестойкости (при малых затратах энергии).

Поставленная цель достигается тем, что электромагнитное облучение (освещение) растений видимым светом осуществляют только после его поляризации и отражения в сторону растений, например, в течении всего периода вегетации растений.

На фиг.1 изображена схема, иллюстрирующая способ, где: 1 - источник излучения электромагнитных волн видимого спектра; 2 - падающий световой поток, Фпад; 3 - угол Брюстера (угол между нормалью к поверхности отражения и лучом света) Θб; 4 - зона угла Брюстера (угол Брюстера размыт); 5 - отражатель; 6 - поляризатор отражателя 5 диэлектрический (например, стекло); 7 - преломленный световой поток; 8 - поляризованный отраженный световой поток, Фпол; 9 - металлизированная поверхность диэлектрика 6; 10 - отраженный от полированного металла 9 (зеркала) световой поток (вторичный), неполяризованный; 11 - отраженный смешанный световой поток; 12 - высшие растения (биообъекты показаны условно); 13 - питающая среда (грунт). Считаем, что потери световой энергии малы и ими пренебрегаем.

Описание способа

От источника излучения 1 подают электромагнитные волны 2 видимого диапазона под углом Брюстера 3 (или в зону 4 угла Брюстера) к отражателю 5. Световой поток 2 из воздушной среды падает на диэлектрический поляризатор 6 (выполнен, например, из стекла с показателем преломления n), который на границе раздела двух сред (воздух-стекло) производит преломление 7 и отражение 8 потока света, попавшего в угол (зону) Брюстера. Отраженный электромагнитный поток 8 поляризуется линейно в направлении, перпендикулярном плоскости падения (плоскость падения проходит через падающий луч и нормаль к поверхности падения). Преломленный электромагнитный поток 7 в диэлектрике 6 падает на полированную поверхность 9 металлизированного зеркала (обратная сторона зеркала) и поглощается ею. Происходит взаимодействие электромагнитных волн с поверхностью металла, возникает отраженная 10 электромагнитная волна (вторичная), величина которой полностью определяется коэффициентом отражения (Котр1), равным: Котр1отр1пад1 (где: Фотр1 - энергия отраженного электромагнитного потока; Фпад1 - энергия падающего потока в преломляющей среде-стекле, Котр1→1 для зеркала).

Отраженный от металла 9 луч света 10 (световой поток) не поляризуется и движется в диэлектрике под углом, равным углу падения в среде. На границе диэлектрик-воздух (показатель преломления воздуха - no) снова преломляется под углом, равным углу падения (углу Θб) в воздухе, смешивается с поляризованным потоком 8. Результирующий (Фотр) световой поток 11 направляют в сторону растений 12 (биообъектов). Под действием смешанного (Фотр) электромагнитного потока 11 процесс фотосинтеза растений ускоряется.

Таким образом, способ в данном случае можно описать математически (без учета потерь):

Кпол - коэффициент отражения поляризованного света; Фотр - смешанный световой поток.

В предлагаемом способе (1) можно изменять плотность поляризации путем увеличения лучистой энергии в угле Брюстера (2). Например, если все лучи пропустить под углом Брюстера, то Кпол→1. Представляет интерес 0≤Кпол≤1.

Таким образом, инструментом, позволяющим поляризовать свет, является отражатель 5, который в силу своих конструктивных особенностей способен отражать свет различной интенсивности и требуемой плотности поляризации, оптимальные значения которых влияют на скорость развития растений - на фотосинтез.

Однако фотосинтез растет до вполне определенного предела насыщения в соответствии с ростом плотности ФАР (Вт/м2) в области 380-720 нм (ФАР - фотосинтетически активная радиация). В работе [2] замечено, что при длительном выращивании растений на различных интенсивностях света (неполяризованного) вплоть до насыщающих, равных максимальным солнечным - 500 Вт/м2 ФАР, тормозится рост площади листьев и подавляется рост стебля. При этом свет высоких интенсивностей (более 400 Вт/м2 ФАР) настолько подавляет рост растений, что в этих условиях вырастают растения карликовой формы. Так, салат, выращенный при разных интенсивностях света (Вт/м2 ФАР) имеет соответственно различную биомассу. При оптимальной интенсивности света (200 Вт/м2) биомасса листьев наибольшая, при интенсивности 420 Вт/м2 - наименьшая [2].

Отсюда максимальный эффект увеличения фотосинтеза, зависящий от интенсивности светового отраженного потока, не может быть беспредельным. Он ограничен порогом насыщения и может колебаться в зависимости от типа растений, условий питания и т.д., например, от 150 до 220 Вт/м2 ФАР [2]. В этом случае фотосинтез и рост хорошо сбалансированы для определенных видов растений.

Для исследования предлагаемого способа был изготовлен макет (установка), содержащий две изолированные камеры - I и II, на дно которых были помещены ящики с проросшими семенами растений (фасоли и пшеницы). Излучатель давал неполяризованное излучение видимого света: I ящичек имел зеркальный отражатель, а II - бумажный отражатель. Отражатели имеют возможность менять угол отражения, близкий к углу Θб. Между излучателем и зеркальным отражателем расположен полупрозрачный экран, свет, проходя через экран, становится диффузионным, точно таким же, как и отраженный свет от бумажного отражателя. Ящичек III с теми же проросшими растениями находился вне камер (располагался в лаборатории с уровнем диффузионной освещенности, равной освещенности в камерах I (II). Вся система регулировалась так, что освещение растений в ящичках было одинаковым.

При диффузионном падающем фотопотоке часть фотонов всегда попадает в зону угла Брюстера. Некоторая часть от этой части электромагнитного потока поляризуется, отражается и направляется к растениям совместно с отраженным неполяризованным светом.

При эксперименте все камеры I и II плотно закрываются тканью от внешнего освещения. Интенсивность излучения была установлена около (70-75) Вт/м2 ФАР, учитывались предельные значения ФАР [2]. Был установлен 10-часовой фотопериод. Влажность грунта в ящичках поддерживалась полуавтоматически (по показаниям проводимости грунта). Если проводимость падала, происходил полив растений до требуемой нормы. Эксперимент проводился в течение 14 суток: 9 суток вегетативный срок, 5 суток - проверка на выживаемость (без влаги). Испытывались фасоль и пшеница, скорость роста растений в ящичках I и II сравнивались со скоростью роста тех же растений в нормальных условиях.

Были получены следующие результаты.

1. При использовании отражателей произошло увеличение синтетической деятельности высших растений в среднем на 37% [(19-51)%] - для зеркального отражателя; на 9% [(3-15)%] - для бумажного отражателя (было проведено 4 эксперимента).

Развитие растений в I и II ящичках проходило идентично: фасоль в I ящичке заметно опережала в росте фасоль в III ящичке, жизнестойкость, например, пшеницы после 5 суток засухи существенно выше, чем в II, III ящичках.

В данном примере интенсивность смешанного светового потока была примерно в 2 раза меньше рекомендованной в [2], а усиление фотосинтетической деятельности растений - более чем в 1,5 раза выше.

Коэффициент поляризации у стекла Кпол≈4%, тогда не трудно подсчитать коэффициент поляризации для бумаги: Кпол≈0,8%. Следовательно, чем выше Кпол, тем выше скорость фотосинтеза растений, но очевидно, что для каждого растения (или группы растений) Кпол различен и ограничен, что требует дальнейших исследований. Знание этих величин особенно важно в целях экономии электрической энергии в космических оранжереях. Поэтому к основному способу добавляется способ регулирования Кпол (дискретное или плавное регулирование коэффициента поляризации, например, за счет изменения коэффициента отражения, путем изменения неровности поверхности отражения и т.д.). Если неровность мала по сравнению с λ (длиной волны) или превышает ее (шероховатые поверхности, матовые поверхности) и расположение неровностей хаотично, отражение света диффузное с низким процентом поляризации. В этом случае возможно смешанное отражение света, при котором часть падающего излучения отражается зеркально, а часть - диффузно. Имея набор таких отражателей, можно существенно изменять фотопериод растений (искусственное чередование дня и ночи).

В устройстве фиг.1 заменяют, например, диэлектрический поляризатор 6 (зеркало) на матовый отражатель, соответствующий режиму «ночи» и т.д.

К методу добавляют: … что в световом отраженном потоке периодически изменяют плотность поляризации от минимальной до максимальной.

Регулировать фотопериод по предложенному способу можно автоматически. Для этого в качестве отражателя (затвора) можно использовать пленку - полированную керамику 14 (Фиг.1а)), расположенную поверх зеркала 9 (6). В нормальном состоянии U=0 (U - управляющий сигнал) керамический слой (пленка) прозрачен для лучей видимого спектра (устройство работает в режиме «дня», как было описано выше). При появлении высокого уровня напряжения U≠0 (U=1-50 В) на электродах 15 - керамика становится непрозрачной, происходит поглощение, диффундирование части светового потока и слабая поляризация. Смешанный «лунный» поток 16 подают в сторону растений.

Таким образом, заданный способ регулирует требуемый фотопериод развития растений. Для каждого вида растений можно подобрать оптимальный режим «дня» и «ночи». При этом показатель преломления диэлектриков 14 (17) и 6 равны n1 и n2 соответственно, при этом, например, n2≥n1>n0.

Можно использовать керамику с режимом запоминания, который основан на гистерезисном характере зависимости поляризации (Р) от напряжения (U) управляющего электрического поля (Е). При этом обычное состояние с остаточной поляризацией - исходное (прозрачное), для деполяризации керамики 14 требуется импульс U=50-300 В (с длительностью = 1-10 мкс) и керамика переключается в другое состояние (непрозрачное).

Для увеличения (перекрытия) площади освещения поляризованным светом предлагается коэффициент преломления (Кп) пленки отражателя изменять плавно или дискретно в пределах расширяющихся зон (углов) Брюстера (эффект Поккельса и т.д.).

На диэлектрик 6 (подложку) напыляют пленку (17) (фиг.1б) поз.17). Чертежи фиг.1а) и фиг.1б) совмещены, отличаются позицией 17. Пленка представляет смесь компонентов, определяющих показатель преломления, например, от nn=1,4 до 2,4, который зависит от величины управляющего напряжения U (U=0, nn→1; U≠0, nn→2,4, где: nn=n0, n1, n2, … nn-1). Форма напряжения (U), например, пилообразная. При подаче такого напряжения nn также начнет изменяться соответственно по закону Поккельса (линейно). Соответственно падающие лучи 2 под соответствующими углами последовательно попадают в зону Брюстера. В результате отраженные лучи последовательно поляризуются под соответствующими углами (tg Θn=nn). Похожее сканирование можно получить, если покачивать устройство вокруг оси (•) 0, например, на угол Θб с частотой ω ((•) 0 на чертеже не показана). В остальном работа устройства похожа на работу устройства Фиг.1.

В этом случае дополнение к способу будет следующим: … в нем коэффициент преломления пленки отражателя изменяют плавно или дискретно, например, в пределах выбранной угловой зоны Брюстера соответственно.

В качестве излучателя можно использовать светодиоды, электролюминесцентные осветители, точечные (дающие излучение в конусе) и т.д. светодиодные осветители дают диффузно-направленное излучение.

Таким образом, применение нового способа позволит: повысить вегетацию и жизнестойкость растений (биообъектов); снизить потребление электрической энергии; уменьшить площади посева семян, что особенно важно для космических оранжерей летательных аппаратов.

Кроме того, предлагаемый способ позволяет сделать процесс фотосинтетической деятельности растений управляемым и оптимальным.

1. Способ повышения вегетации и жизнестойкости растений, включающий подачу электромагнитного светового потока от излучателя, отличающийся тем, что световой поток или его часть поляризуют, смешивают с неполяризованным, если такой имеется, и отражают в направлении растений, например, в течение всего периода вегетации растений.

2. Способ по п.1, отличающийся тем, что падающий световой поток частично или полностью направляют в область угла Брюстера.

3. Способ по п.1 или 2, отличающийся тем, что в световом потоке или его части периодически изменяют плотность поляризации от минимальной, например, равной нулю, до максимальной.

4. Способ по п.3, отличающийся тем, что период изменения плотности поляризованного излучения устанавливают в зависимости, например, от вида растения.

5. Способ по п.1 или 2, отличающийся тем, что при интенсивности отраженного света не выше пороговой коэффициент преломления в нем пленки отражателя изменяют плавно или дискретно, например, в пределах выбранной расширенной угловой зоны Брюстера.

6. Способ по п.1, отличающийся тем, что падающий световой поток предварительно диффундируют, например, тем же отражателем или источником излучения.



 

Похожие патенты:

Изобретение относится к области сельского хозяйства. .

Изобретение относится к области сельского хозяйства. .

Изобретение относится к области сельского хозяйства и может использоваться для борьбы с вредителями. .

Изобретение относится к области сельского хозяйства. .

Изобретение относится к сельскому хозяйству и может быть использовано для активации питательных растворов для растений. .

Изобретение относится к области физиологии растений. .

Изобретение относится к области сельского хозяйства и садоводства. .

Изобретение относится к области электробиотехнологий и может быть использовано в биологии, медицине, сельском хозяйстве. .

Изобретение относится к сельскому хозяйству, в частности к области тепличного растениеводства. .

Изобретение относится к сельскому хозяйству, в частности к производству овощей в защищенном грунте, в теплицах с автоматической системой управления факторами среды
Изобретение относится к области сельского хозяйства. Способ включает замачивание семян сельскохозяйственных культур в омагниченной водопроводной воде с последующим проращиванием. При этом семена замачивают в воде, обработанной в магнитном поле магнитной мешалки типа ММ, в емкости из неэлектропроводного материала, например стакане из стекла с магнитным стержнем, при толщине слоя 40 мм. Магнитное поле создается вращающимися постоянными магнитами при скорости вращения 500-600 об./мин в течение 3,5-4-х часов с получением воды с рН 8,3-8,4, ОВП 150-160 мВ, из исходной воды с рН 7,7-8,2, ОВП +200-+215 мВ и общей минерализацией 200-350 мг/л. Параметры магнитной обработки - магнитная напряженность 1,0-1,3 кА/м, магнитная индукция 1,2-1,7 мТ, удельная энергия 800-900 Дж/л. Способ позволяет повысить эффективность обработки семян, посевные качества и ассортимент семян, а также диапазон параметров магнитной обработки. 2 табл., 2 пр.

Группа изобретений относится к области сельского хозяйства и электричества. Модульная система включает корпус, который содержит: ряд светоизлучающих диодов (СИД), по меньшей мере, двух различных цветов для генерации света в пределах цветового спектра, при этом СИД смонтированы, предпочтительно с фиксацией при защелкивании, на пластине, предпочтительно теплопроводящей, или рядом с ней, которая оборудована средствами охлаждения СИД с помощью охладителя; процессор для регулирования величины тока, подаваемого на ряд СИД, так, чтобы величина подаваемого на них тока определяла цвет освещения, генерируемого рядом СИД, и плоский светопроницаемый элемент, содержащий связанные с СИД светопроницаемые линзы, для управления углом рассеяния света, излучаемого каждым СИД, для равномерного освещения поверхности; при этом корпус снабжен каналом для приема трубки для подачи питания и, как вариант, охладителя для системы СИД. Система включает закрытый фотобиореактор, освещаемый одной или несколькими модульными системами СИД по п.1. В способе экранирования для оптимального освещения растительный материал помещают в биореактор, освещаемый одной или несколькими модульными системами СИД по п.1, и измеряют скорость образования СО2 в растительном материале под действием света различной интенсивности. Система управления включает фотобиореактор, со средствами экранирования фотосинтетической активности, который освещается модульной системой СИД по п.1 в дополнение к поступающему солнечному свету; компьютер для обработки данных, полученных от средств экранирования фотосинтетической активности, который позволяет экранировать фотосинтетическую активность растительного материала фотобиореактора, освещенного светом различных длин волн и интенсивности; измерять поступающий солнечный свет и, если его интенсивность уменьшается, увеличивать интенсивность СИД; и управлять освещением растений в парнике путем освещения растений светом, имеющим состав длин волн и интенсивность, которые обеспечивают наивысшую фотосинтетическую активность в фотобиореакторе. В способе управления с помощью фотобиореактора экранируют фотосинтетическую активность растительного материала, помещенного в реактор, который освещают модульной системой СИД по п.1 в дополнение к поступающему солнечному свету; с помощью компьютера обрабатывают данные, полученные от средств экранирования фотосинтетической активности; причем фотобиореактор экранирует фотосинтетическую активность материала, освещенного светом различных длин волн и интенсивности, а компьютер управляет освещением растений в парнике, освещая растения светом, имеющим состав длин волн и интенсивность, которые обеспечивают наивысшую фотосинтетическую активность. Парниковая система включает: модульную систему СИД по любому из пп.1-11 внутри парника для роста растений; средства измерения для измерения одной или нескольких переменных величин, которые прямо или косвенно связаны с ростом, развитием растений; средства управления, выполненные с возможностью управления освещением в зависимости от выходных сигналов средств измерения. Реактор включает один или несколько отсеков для хранения жидкости, содержащей культуру фототрофных микроорганизмов; впускной патрубок для подачи потока газа, содержащего CO2, в один или несколько отсеков; выпускной патрубок для удаления газа из одного или нескольких отсеков; средства регулирования температуры культуры фототрофных микроорганизмов, и модульную систему СИД по любому из пп.1-11. Группа изобретений позволяет обеспечить равномерное освещение поверхности. 7 н. и 11 з.п. ф-лы, 2 ил., 1 пр.

Изобретение относится к области сельского хозяйства, в частности к растениеводству. Способ включает фотографирование семян кукурузы, которые дополнительно обрабатывают электромагнитным полем крайне высокой частоты, после которого проводят повторное фотографирование с последующим сравнением температуры каждого семени до и после воздействия электромагнитного поля крайне высокой частоты. При этом фотографирование и определение температуры проводят перед обработкой электромагнитным полем крайне высокой частоты с длиной волны 5,6 мм и частотой 53,3-53,7 ГГц с экспозицией 10-15 мин и после окончания воздействия электромагнитным полем крайне высокой частоты проводят повторное фотографирование и сравнение температуры семян. Если разница температур составит от 3,3°С до 5,3°С, то семена не являются биологически ценными, а если разница температур составит от 5,3°С до 7,1°С, то семена являются биологически ценными. Способ позволяет сократить время проведения анализа по определению биологически ценных семян кукурузы. 7 ил., 3 пр.

Изобретение относится к области сельского хозяйства. Устройство содержит источник бесперебойного питания, выходом соединенный с входом стабилизированного блока питания и через тумблер с входом регулируемого выпрямителя, минусовый выход которого соединен первой общей шиной со вторыми выводами накопительного конденсатора, первого и второго ключей, стабилизированный блок питания, плюсовый вывод и общая шина которого подключены к цепи питания логических элементов, схем и блоков, элемент ограничения тока, соединенный через третий ключ с анодом первого диода, катод которого подключен к первому выводу накопительного конденсатора и катодам второго и третьего диодов, аноды которых соединены с катодами соответственно четвертого и пятого диодов, первый драйвер, выходом соединенный с управляющим входом третьего ключа, первый и второй синхронно связанные коммутаторы, выходы которых соответственно соединены через второй и третий драйверы с управляющими входами первого и второго ключей, индуктор, первый вывод катушки которого соединен с первым выводом второго ключа, элемент НЕ, выход которого через одновибратор подключен к входу блока звуковой сигнализации. В устройство дополнительно введены сглаживающий фильтр, плюсовым выходом соединенный с входом элемента ограничения тока, а первым и вторым выводами входа соответственно с плюсовым и минусовым выводами регулируемого выпрямителя, свипгенератор, усилитель-ограничитель с гальванической развязкой, формирователь сигналов управления, преобразователь серии импульсов в прямоугольный импульс, четвертый и пятый драйверы, четвертый и пятый ключи, трансформатор тока, активный выпрямитель, индикатор тока разряда, делитель напряжения, схема выборки-хранения, задатчик опорного уровня, схема сравнения, усилитель обратной связи, схема управления, при этом выход свипгенератора через усилитель-ограничитель с гальванической развязкой соединен с входами формирователя сигналов управления и преобразователя серии импульсов в прямоугольный импульс, выход которого подключен к входу элемента НЕ. Первый вывод формирователя сигналов управления соединен с входом первого драйвера, второй вывод соединен с управляющим входом схемы выборки-хранения. Третий и четвертый выводы соединены с первым входом соответственно первого и второго синхронно связанных коммутаторов, пятый вывод соединен со вторым и третьим выводами соответственно первого и второго синхронно связанных коммутаторов, выходы которых соответственно через четвертый и пятый драйверы соединены с управляющими входами четвертого и пятого ключей, первые выводы которых соединены с первым выводом накопительного конденсатора и входом делителя напряжения. Вторые выводы четвертого и пятого ключей соединены с анодами соответственно второго и третьего диодов. Первые выводы первого и второго ключей соединены с катодами соответственно пятого и четвертого диодов, аноды которых подключены к первой общей шине. Второй вывод катушки индуктора соединен со вторым выводом первичной обмотки трансформатора тока, первый вывод которой подключен ко второму выводу пятого ключа. Вторичная обмотка трансформатора тока через активный выпрямитель соединена с индикатором тока разряда, выход делителя напряжения через схему выборки-хранения соединен со вторым входом схемы сравнения, первый вход которой соединен с задатчиком опорного уровня. Выход схемы сравнения, через последовательно соединенные усилитель обратной связи и схему управления соединен с управляющим входом регулируемого выпрямителя. Изобретение позволяет стимулировать обменные процессы растений и их адаптацию к внешним факторам среды. 2 з.п. ф-лы, 4 ил.

Изобретение относится к средствам освещения растений при выращивании в защищенной среде. Устройство содержит: компьютер (1) с интерфейсом (2), управляющее устройство (3), блок (4) энегроснабжения, по меньшей мере, одну лампу (7), вентилятор (5) для охлаждения светодиодных элементов и подачи CO2 или азота (N) из резервуара (6), присоединенного через соответствующую магистраль (8). Причем лампа (7) состоит из стойки (17) с трубчатым соединением (29) и подставки (15) с прикрепленным к ней плафоном (14), в центре верхней поверхности (21) которого имеется отверстие (22). На боковых поверхностях симметрично расположены светодиодные элементы (13) со светодиодами (12) и теплообменниками, светодиодный драйвер (27), вентиляционные отверстия (19) и соединительная панель (25). При этом управляющее устройство (3) состоит из: модуля (9) для создания базовой последовательности прямоугольных импульсов с предварительно заданной частотой и регулирования их продолжительности, то есть соотношения сигнал/пауза; модуля (10) для определения числа импульсов, соответствующих отдельным цветам, и их положения в промежутки времени Tfs и Tfp для фотосинтетического и фитопрофилактического спектров, а также базовой частоты fo излучения; и модуля (11) для ручного выбора режима и ввода данных. Изобретение обеспечивает улучшение роста и урожайности растений путем обеспечения дополнительного освещения с его регулированием в теплицах. 6 з.п. ф-лы, 16 ил.
Изобретение относится к сельскому хозяйству. Способ подкормки фруктовых деревьев включает опрыскивание щелочным раствором нанодисперсного магнетита, стабилизированного нафтеновыми кислотами, выкипающими в пределах 250-300 градусов Цельсия при давлении 5 мм ртутного столба с добавлением калийного микроудобрения из расчета 30-40 грамм на 100 литров воды. Изобретение позволяет повысить урожайность и качество продукции фруктовых деревьев.

Способ энергосберегающего импульсного облучения растений включает воздействие на растения потоком оптического излучения, который получают включением групп светодиодов с различным спектором излучения, регулируют параметры импульсов, регулируют фазовый угол импульсов в каждой группе светодиодов. Импульсы потока оптического излучения формируют независимо от групп светодиодов. Измеряют потребляемую светодиодами электрическую энергию, показатель продуктивности облучаемых растений, определяют величину энергоемкости процесса облучения как отношение мощности к продуктивности. Регулируют параметры импульсов таким образом, чтобы величина энергоемкости принимала минимальное значение. Устройство для реализации данного способа содержит корпус, группы светодиодов с различным спектром излучения, преобразователь напряжения, блок управления, формирователи импульсов, регуляторы параметров импульсов, в состав которых включены задатчики периодичности, амплитуды и продолжительности, датчик продуктивности облучаемых растений и вычислитель. Формирователи импульсов и регуляторы параметров импульсов, в составе которых дополнительно содержатся задатчики фазового угла, включены в каждую группу светодиодов. Использование данной группы изобретений обеспечивает энергосбережение при импульсном облучении растений и расширение возможностей регулирования параметров импульсного облучения. 2 н. и 2 з.п. ф-лы.

Группа изобретений относится к области сельского хозяйства, а именно к методам электромагнитного воздействия на растения видимым диапазоном волн и к устройствам, реализующим эти методы. Способ включает подачу светового потока от излучателя. При этом световой поток пропускают через поляризатор, поляризуют полностью или частично, смешивают, например, с неполяризированным потоком, если такой имеется, и направляют в сторону растений. Плотность или вид или плотность и вид поляризации регулируют, например, электрическим или магнитным полем, или электрическими и магнитными полями. Устройство содержит излучатель с отражателем и снабжено поляризатором, расположенным на пути светового потока. Причем поляризатор имеет диэлектрическую поляризирующую среду, или поляризирующую среду, чувствительную к электрическому или магнитному полю, или к электрическим и магнитным полям. При этом оптические оси поляризирующих частиц расположены под углом или углами к оптической оси излучателя и образуют однослойную или многослойную поляризирующую среду. В устройство введены прозрачные электроды, между которыми располагают поляризатор с электрочувствительной поляризирующей средой, причем выводы прозрачных электродов гальванически соединены с выходом блока управления и перекрывают рабочую поверхность поляризатора. Управляющая обмотка расположена в плоскости поляризатора с магниточувствительной средой и подключена к токовому выходу блока управления. Изобретения обеспечивают повышение вегетации растений и увеличение КПД ФАР. 2 н.п. ф-лы, 4 ил.

Изобретение относится к области сельского хозяйства и селекции, в частности к оздоровлению от вирусов растений малины, выращиваемых in vitro. Способ включает заготовку эксплантов вегетативных частей растений, высадку их на питательную среду и шестикратную обработку периодической последовательностью разнонаправленных импульсов магнитной индукции. При этом обработку эксплантов проводят через каждые 48 часов импульсами со временем нарастания 0,25 мс и экспоненциальным спадом в течение 3 мс в направлении, перпендикулярном оси эксплантов, при непрерывном линейном нарастании частоты импульсов в диапазоне от 3,2 до 51,2 Гц и квазилинейном изменении амплитудных значений импульсов от 15 до 5 мТл. Далее обработку проводят импульсами с непрерывным линейным спадом частоты в диапазоне от 51,2 до 3,2 Гц и изменении амплитудных значений импульсов от 15 до 5 мТл в течение 8 минут для каждого частотного диапазона соответственно. Способ позволяет повысить эффективность оздоровления от вирусов растений малины, выращиваемых in vitro. 2 табл., 2 пр.
Наверх