Система соединения ступица-профиль для осевого вентилятора и осевой вентилятор, снабженный этой системой

Система соединения ступица-профиль для осевого вентилятора состоит из ступицы 1, к которой крепятся одно или более крыльев, имеющих профиль 3 для перемещения воздуха. Система содержит два отдельных, отличающихся друг от друга подвижных элемента 9, 10, укрепленных на стороне ступицы 1 к крепежному блоку 11 и на стороне крыла 2 к соответствующему крепежному блоку 12. По сравнению с системами с жестким креплением система согласно изобретению предлагает уменьшение статических и динамических нагрузок, снижение вибраций и экономичность. По сравнению с системами с шарнирным креплением преимуществом является простота конструкции, возможность желаемого свободного перемещения в вертикальной плоскости и отсутствие износа. В отличие от систем соединения с гибким креплением система соединения согласно изобретению обеспечивает более высокий момент сопротивления (а следовательно, возможность применения более экономичных материалов с худшими механическими характеристиками, причем при одинаковом сечении), более высокую прочность при кручении и более высокую жесткость в вертикальной плоскости (с соответствующим решением проблемы чрезмерного уменьшения профиля в вентиляторах большого диаметра). 2 н. и 7 з.п. ф-лы, 9 ил.

 

Настоящее изобретение относится к системе соединения ступица - профиль для осевого вентилятора. Также изобретение распространяется на осевой вентилятор, снабженный данной системой соединения.

Уровень техники

Осевые вентиляторы широко применяются в тех случаях, где требуются перемещение большого количества воздуха, преодолевая даже высокое статическое давление, в частности, в системах, в которых воздух применяется для охлаждения за счет теплообмена. В этом случае применяются вентиляторы, имеющие очень большой диаметр, достигающий двадцати метров.

В конструкции такого типа вентилятора соединение между ступицей и частью крыла, предназначенной для перемещения воздуха, в дальнейшем называемой профилем, является чрезвычайно важной проблемой, поскольку механическое напряжение в этом месте достигает своего максимума, и вследствие этого подобное соединение является областью, подверженной опасности повреждения.

Наиболее близким к группе изобретений является система соединения ступица - профиль осевого вентилятора, содержащая ступицу, одно или более крыльев, имеющих профиль для перемещения воздуха, и средства соединения одного или более крыльев со ступицей, и осевой вентилятор, снабженный системой соединения ступица-профиль (US 2004/00090640 А1, 15.01.2004).

Раскрытие изобретения

Задача настоящего изобретения - создание системы соединения ступица - профиль для осевых вентиляторов, которая по сравнению с известными системами соединения (шарнирными, с гибкой или жесткой связью) обеспечивает низкие статические и динамические нагрузки, простоту конструкции и более высокий момент сопротивления.

Поставленная задача достигается тем, что в системе соединения ступица-профиль осевого вентилятора, содержащей ступицу, одно или более крыльев, имеющих профиль для перемещения воздуха, и средства соединения одного или более крыльев со ступицей, согласно изобретению средства соединения состоят из двух отдельных и различающихся подвижных элементов, закрепленных на стороне ступицы к крепежному блоку и на стороне крыла к соответствующему крепежному блоку. В осевом вентиляторе поставленная задача достигается тем, что согласно изобретению он снабжен указанной выше системой соединения ступица-профиль.

По сравнению с известными техническими решениями система соединения ступица-профиль настоящего изобретения имеет следующие преимущества:

- по сравнению с системами жесткой связи понижаются статические и динамические нагрузки, что ведет к снижению затрат, а также уменьшается вибрация;

- по отношению к системам с шарнирной связью обеспечивает простоту конструкции, возможность по желанию изменять степень подвижности в вертикальной плоскости и отсутствие износа;

- в отличие от систем соединения с помощью гибкой связи обеспечивает высокий момент сопротивления (и поэтому возможность применения более экономичных материалов с худшими механическими характеристиками, причем с одинаковым сечением), более высокую прочность при кручении и более высокую устойчивость в вертикальной плоскости (с последующим решением проблемы чрезмерного уменьшения профиля в вентиляторах большого диаметра).

Краткое описание чертежей.

Эти и другие задачи, преимущества и характеристики следуют из нижеследующего описания предпочтительного варианта реализации соединения ступица-профиль и осевого вентилятора согласно настоящему изобретению, показанному с помощью примера, не ограничивающего изобретение, со ссылкой на сопроводительные чертежи, на которых:

фиг.1 - основные силы, воздействующие на крылья работающего осевого вентилятора;

фиг.2-4 - системы соединения ступица - профиль, выполненные согласно известным техническим решениям;

фиг.5 - схематический вид сбоку системы согласно изобретению;

фиг.6 и 7 - система, изображенная на фиг.5, в разрезе по линии А-А1 и В-В1 соответственно;

фиг.8 и 9 - два различных варианта реализации системы согласно изобретению.

Осуществление изобретения

С целью лучшего понимания системы согласно настоящему изобретению на Фиг.1 показаны основные силы, воздействующие на крыло работающего осевого вентилятора, т.е. центробежная сила CF, имеющая радиальное направление, аэродинамическая сила тяги TF с осевым направлением, сила веса PF с осевым направлением.

Эти силы образуют изгибающий момент и крутящий момент, которые вместе со статическими и динамическими нагрузками следует учитывать при конструкторских расчетах размеров вентилятора. Уменьшение этих моментов позволяет обеспечить существенное снижение стоимости работ.

Соединение 4 между ступицей 1 и профилем 3 крыла 2 осевого вентилятора в настоящее время в основном выполняется тремя способами: посредством жесткой системы, шарнирной системы и гибкой системы.

Эти три типа соединения будут кратко описаны с указанием их основных преимуществ и недостатков для сравнения с системой соединения согласно изобретению, чтобы выделить его превосходство.

В случае системы жесткого соединения (Фиг.2) соединение ступица - профиль выполняется с помощью элемента 5, неподвижно закрепленного в плоскости вращения, а также в перпендикулярной ей плоскости, обычно с круглым сечением, жесткость которого зависит от размера профиля. Средством, применяющимся в этом случае для уменьшения изгибающего момента и созданных им механических напряжений, которые здесь достигают максимума, является наклон оси крыла по отношению к плоскости вращения в направлении, противоположном воздушному потоку под углом α. Этот наклон, обусловливающий жесткость элемента, будет фиксированным. Благодаря этому средству в соответствии с профилем вентилятор под действием центробежной силы может создавать момент, направленный противоположно моменту, создаваемому силой тяги, в результате уменьшая изгибающий момент. Однако недостатком системы является ее неэффективность в отношении динамических нагрузок.

В известных шарнирных системах соединения (Фиг.3) соединение ступица - профиль выполняется посредством шарнира 6, ось которого перпендикулярна оси вращения. В этом случае во время работы вентилятора профиль свободно вращается в вертикальной плоскости, постоянно позиционируясь в области, где центробежная сила создает момент, имеющий величину и направление, противоположное тому, что создается силой тяги, компенсирующий изгибающий момент. Угол β, образованный крылом с плоскостью вращения, в этом случае изменяется. Основной недостаток описанной системы заключается в том, что крылья вентилятора из-за свободы, предоставляемой им шарниром, имеют тенденцию неограниченно опускаться, поэтому требуется упор для удержания в фиксированном положении. Более того, эта система очень чувствительна к действию воздушной струи, и с течением времени происходит перемещение частей шарнира относительно друг друга, неизбежно сопровождающееся износом.

Наконец, в случае гибкого соединения (Фиг.4) соединение ступица - профиль состоит из тонкого элемента 7, неподвижного в плоскости вращения, но обеспечивающего высокую подвижность в плоскости, перпендикулярной плоскости вращения. Во время работы вентилятора элемент будет прогибаться, и его часть будет вращаться, давая возможность профилю вращаться в вертикальной плоскости и занимать постоянное положение в области, где центробежная сила, воздействующая на профиль, создает момент, направление которого противоположно моменту силы тяги. В этом случае во время работы изменяется угол β. Продольное сечение подвижного элемента имеет параболическую форму с максимальным искажением со стороны ступицы. К недостаткам относятся чрезмерное уменьшение крыльев в вентиляторах большого диаметра и недостаточная прочность при кручении подвижного элемента. Следовательно, под действием крутящего момента он имеет тенденцию к искривлению, потере гибкости и изменению установки шага профиля.

Предложенная система соединения ступица 1 - профиль 3, как показано на Фиг.5, образована с помощью сборочного узла 8, содержащего два подвижных элемента 9, 10 предпочтительно прямоугольного сечения, которые на участке между двумя крепежными блоками 11 со стороны ступицы 1 и 12 со стороны профиля 3 соответственно разделены промежутком 14. Таким образом, два элемента 9, 10 соответственно разделены и отличны друг от друга. Очевидно, что присутствующие силы при работе вентилятора будут действовать на оба элемента по-разному, так как они будут деформированы также по-разному.

Элементы 9, 10 со стороны профиля 3 могут либо входить в прямой контакт или между ними устанавливается распорная деталь 13 (Фиг.7). Указанная деталь выполняется из материала с более низким модулем упругости по сравнению с материалом обоих указанных элементов и вследствие этого, когда крыло 2 подвергается обычным рабочим нагрузкам, то она позволит элементам 9 и 10 самим перемещаться взаимно так, чтобы обусловить более интенсивное вращение секций при одинаковой нагрузке.

Угол δ нижнего элемента 10 может быть либо положительным, либо отрицательным, как показано на Фиг.9, либо равным нулю (как показано на Фиг.8) относительно плоскости вращения (Фиг.5).

Кроме того, оба элемента могут быть конусовидными, иметь различные геометрические характеристики и в разрезе, и в плане или даже быть изготовлены из разных материалов.

Применение двух отдельных и различающихся элементов, которые созданы в соответствии с вышеописанным и могут взаимно располагаться в пространстве по желанию, позволяет конструировать соединение ступица - профиль с разными модулями сопротивления, максимальными на стороне ступицы и уменьшающимися по направлению к профилю, и получить в результате при работе профиля под нагрузкой вращение секций с образованием возрастающего угла относительно вертикали. Продольное сечение элементов 9, 10 может иметь форму окружности или параболы с максимальным радиусом кривизны со стороны профиля.

Система соединения дает возможность профилю наклоняться относительно горизонтальной плоскости, постоянно позиционируясь в области, где центробежная сила позволяет профилю создавать силу такой величины и направления, которые противоположны величине и направлению силы тяги, что способствует компенсированию изгибающего момента. Система также обеспечивает высокую степень отклонения в вертикальной плоскости, в результате чего уменьшаются и динамические, и статические нагрузки. Настоящее изобретение позволяет это осуществить управляемым способом, что не в состоянии обеспечить известные технические решения.

Для того чтобы облегчить понимание настоящего изобретения, на Фиг.5 представлен простейший вариант крепления крыла к ступице, т.е. вариант, при котором крыло не является подвижным. Следует подчеркнуть, что крепежные блоки 11 и 12 могут быть сконструированы таким образом, чтобы обеспечить возможность закрепления крыла шплинтом, и изобретение также применимо и к этому типу вентилятора.

1. Система соединения ступица-профиль осевого вентилятора, содержащая ступицу (1), одно или более крыльев (2), имеющих профиль (3) для перемещения воздуха, и средства соединения одного или более крыльев со ступицей (1), отличающаяся тем, что средства соединения состоят из двух отдельных и различающихся подвижных элементов (9, 10), закрепленных на стороне ступицы (1) к крепежному блоку (11) и на стороне крыла (2) к соответствующему крепежному блоку (12).

2. Система по п.1, отличающаяся тем, что нижний элемент (10) указанной системы крепится к крепежному блоку (11) под положительным, отрицательным или нулевым углом (5).

3. Система по п.1, отличающаяся тем, что элементы (9, 10) соответственно отделены друг от друга в секции, расположенной между крепежными блоками (11, 12) промежутком (14).

4. Система по п.3, отличающаяся тем, что элементы (9, 10) входят в прямой контакт в крепежном блоке (12) системы (8) на профиле (3) крыла (2).

5. Система по п.3, отличающаяся тем, что в ней предусмотрена распорная деталь (13), установленная между элементами (9, 10) на их крепежной части на блоке (12).

6. Система по п.5, отличающаяся тем, что распорная деталь (13) имеет более низкий модуль упругости по сравнению с модулем упругости элементов (9, 10).

7. Система по п.1, отличающаяся тем, что элементы (9, 10) имеют прямоугольное сечение.

8. Система по п.1, отличающаяся тем, что элементы (9, 10) имеют продольное сечение в форме дуги окружности с максимальным радиусом кривизны на той части элементов (9, 10), которые расположены на профиле (3) крыла (2).

9. Осевой вентилятор, отличающийся тем, что снабжен системой соединения ступица-профиль согласно п.1.



 

Похожие патенты:

Изобретение относится к устройству для осевой фиксации рабочих лопаток в роторе, содержащему буртик вала с выполненными на наружной периферии буртика вала удерживающими пазами, проходящими в осевом направлении ротора, в каждом из которых своим соответствующим удерживающему пазу хвостовиком расположена рабочая лопатка, расположенный на торцевой боковой поверхности буртика вала в зоне удерживающих пазов выступ, в котором выполнен открытый радиально наружу огибающий паз, и выполненные в каждой рабочей лопатке открытые радиально внутрь предохранительные пазы, каждый из которых расположен радиально напротив огибающего паза, причем для осевой фиксации рабочих лопаток в огибающие и предохранительные пазы вставлены листовые уплотнительные элементы, образующие в окружном направлении торцевое уплотнительное кольцо, причем для фиксации уплотнительных элементов от смещения в окружном направлении, по меньшей мере, один из них имеет средство.

Изобретение относится к области крепления лопаток ротора компрессора турбореактивного двигателя и обеспечивает уменьшение массы ротора, в частности передней системы стопорения.

Изобретение относится к вентиляционному оборудованию, может быть использовано в производстве осевых вентиляторов, применяемых для проветривания в горнодобывающей промышленности, метрополитенах, тоннелях, металлургической, энергетической, химической и других отраслях промышленности, и направлено на повышение надежности работы вентилятора путем надежного крепления лопатки и фиксации углов ее установки.

Изобретение относится к области турбомашиностроения, в частности, применимо в области компрессоростроения и может быть использовано в рабочих колесах осевых компрессоров газотурбинных двигателей

Ротор газотурбинного двигателя содержит диск с осевыми гнездами, выполненными на ободе диска для индивидуального крепления лопаток. На одной стороне обода устанавливают кольцо. В кольце в осевом продолжении гнезд выполняют отверстия, содержащие заглушку. Заглушка состоит из первой половины из первого износостойкого материала и из второй половины из второго материала. Одна половина заглушки опирается на одну сторону кольца, а другая - на другую сторону кольца, причем половины заглушки соединены друг с другом через отверстие. Другое изобретение группы относится к турбореактивному двигателю, содержащему передний вентилятор и барабан компрессора наддува на выходе вентилятора, образующие указанный выше ротор. Кольцо неподвижно соединено с барабаном компрессора, а диск вентилятора прикреплен к барабану болтовым соединением, выполненным на кольце. Еще одно изобретение относится к заглушке для указанного выше ротора газотурбинного двигателя, содержащей первую половину из первого износостойкого материала, и вторую половину из второго материала, идентичного или отличного от первого. Изобретения позволяют обеспечить равномерный износ ножки лопатки вентилятора в месте ее контакта с ротором компрессора. 3 н. и 12 з.п. ф-лы, 6 ил.

Заявленное рабочее колесо осевого вентилятора может быть использовано в составе систем терморегулирования изделий авиационной и ракетной техники. Рабочее колесо содержит ступицу с основаниями, снабженными пазами шириной S. В указанных пазах установлены хвостовики листовых лопаток толщиной s, присоединенные к основаниям посредством штифтового соединения. Внутренние поверхности хвостовика и паза выполнены в виде участков кругового цилиндра разных радиусов. При этом в первом варианте внутренние поверхности хвостовика и паза обращены друг к другу, а во втором - наружные поверхности хвостовика и паза обращены друг к другу. Приведены математические выражения для радиуса паза как функции от радиуса хвостовика, толщин паза и хвостовика и хорды хвостовика. Группа изобретений направлена на повышение надежности и технологичности. 2 н. и 4 з.п. ф-лы, 7 ил.

Лопатка для турбины или компрессора содержит перо и хвостовик. Перо лопатки изготовлено из согнутой слоистой полосы из армированной волокном пластмассы, в которой в зоне фальца образована удерживающая петля, причем из лежащих друг на друге концов полосы сформирована поверхность лопатки. Хвостовик лопатки содержит продолговатую балку и соединенные с ней с фиксацией положения держатели, обеспечивающие крепление лопатки в канавке рабочего колеса. Перо лопатки с помощью удерживающей петли подвешено на балке хвостовика. Отдельные держатели соединены друг с другом с помощью боковых частей, ориентированных параллельно балке. Другое изобретение группы относится к рабочему колесу, содержащему ротор с канавками, а также указанные выше лопатки. Хвостовик каждой из лопаток вложен в соответствующую канавку ротора и с фиксацией положения соединен с ротором. Группа изобретений позволяет повысить долговечность лопаток. 2 н. и 13 з.п. ф-лы, 3 ил.

Ротор вентилятора содержит лопатки (15) вентилятора, прикрепленные к периферии колеса (13). Каждая лопатка имеет хвостовик лопатки, находящийся в зацеплении с канавкой в этом колесе и удерживаемый в ней основным фиксатором (28). Основной фиксатор находится в зацеплении с пазами (34), сформированными рядом с вышерасположенным концом соответствующей канавки и на каждой ее стороне для противодействия движению хвостовика лопатки в осевом направлении. Основной фиксатор (28) соединен с дополнительным фиксатором, отличным от основного фиксатора. Дополнительный фиксатор отнесен от основного фиксатора на заранее определенное расстояние. Дополнительный фиксатор (32) расположен между основным фиксатором и вышерасположенным концом хвостовика лопатки, находящегося в зацеплении с канавкой. Дополнительный фиксатор (32) предпочтительно является тонкой стенкой. Позволяет фиксатору рассеять энергию удара и минимизировать ущерб, наносимый соседним лопаткам и деталям, при простой и дешевой конструкции. 1 н. и 5 з.п. ф-лы, 6 ил.

Изобретение относится к креплению лопастей на рабочих колесах центробежных вентиляторов, компрессоров, насосов, может применяться в лопастных смесителях и турбинах. Лопасти устанавливают с натягом в радиальные пазы ступицы колеса. Концы лопастей, изогнутые под углом 90°, вставляют в продольные пазы штифтов, установленных с натягом в отверстиях, примыкающих к пазам ступицы. Отверстия для установки штифтов располагают на одном расстоянии от центра колеса. Изобретение обеспечивает быструю замену изношенных лопастей колеса, позволяет использовать простые в изготовлении детали. 1 ил.

Ротор барабанного типа осевого компрессора предназначен для газотурбинных двигателей, преимущественно авиационных. Рабочие лопатки (4) ротора установлены своими хвостовиками (3) в пазах (2), разнесенных по длине барабана (1) кольцевыми рядами. Лопатки (4) выполнены с нижней полкой (6) пера (5) и ножкой (7). Ножка (7) расположена между полкой (6) и хвостовиком (3) с поперечным разделением верхней поверхности хвостовика (3) на две части. Пазы (2) и установленные в них хвостовики (3) вытянуты вдоль наружной поверхности барабана (1) и выполнены в форме прямой призмы, имеющей расширяющееся в сторону ножки (7) продольное сечение. На верхние поверхности хвостовиков (3) установлены с предварительным натягом силовые кольца (9) из композиционного материала, по одному, по меньшей мере, на каждый кольцевой ряд частей верхних поверхностей хвостовиков. Достигается снижение величины радиальных и окружных напряжений, испытываемых материалом барабана в процессе работы, обеспечение возможности снижения массы барабана при проектировании и существенного увеличения окружных скоростей ротора. 4 ил.

Вентилятор газотурбинного двигателя содержит диск ротора, на наружной периферийной части которого предусмотрены ячейки (14), предназначенные для установки корневых частей (24) лопаток и ограниченные продольными ребрами (12). Каждое из ребер содержит радиальное ушко (26), предназначенное для крепления упомянутого диска на роторе компрессора, располагающегося по потоку позади этого вентилятора. Боковые поверхности упомянутых ушек (26) образуют упоры, предназначенные для удержания лопаток, установленных на диске. Скобки (32), имеющие U-образную форму, устанавливаются на ушки диска. Каждая из этих скобок содержит две боковые лапки, покрывающие боковые поверхности одного радиального ушка. Скобки для ушек диска исключают износ боковых поверхностей этих ушек в результате их повторяющегося механического контакта с лопатками в том случае, когда вентилятор подвергается воздействию эффекта авторотации. Таким образом, отпадает необходимость демонтировать газотурбинный двигатель для того, чтобы выполнить восстановительный ремонт ушек ребер диска вентилятора, поскольку установка скобок может быть осуществлена непосредственно на установленном под крылом самолета двигателе. 2 н. и 6 з.п. ф-лы, 6 ил.
Наверх