Лазерный измеритель расстояний

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. В лазерный измеритель расстояний введен световод, входное отверстие которого расположено рядом с выходным отверстием оптической системы передающего канала, а его выходное отверстие направлено на чувствительную площадку фотоприемного устройства приемного канала. Входная оптическая ось световода направлена под таким углом к оптической оси передающего канала, чтобы энергия излучения, отраженного от целей, расположенных в диапазоне дальностей от R0 до R1, поступающая на чувствительную площадку фотоприемного устройства, соответствовала порогу срабатывания последнего, где R0<R1 - заданная минимальная измеряемая дальность; R1 - протяженность теневой зоны, образуемой в диапазоне дальностей, где поля зрения передающего и приемного каналов не перекрываются. Технический результат состоит в уменьшении минимальной измеряемой дальности путем сокращения теневой зоны аппаратной функции. 4 ил.

 

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии.

Известны лазерные измерители расстояний, содержащие приемный канал, включающий объектив и фотоприемное устройство, и параллельный ему передающий канал, включающий оптическую систему и лазерный излучатель [1].

Подобные устройства характеризуются наличием аппаратной функции (геометрического фактора) [2], характеризующей неполное перекрытие полей зрения приемного и передающего каналов. На малых дальностях эти поля не перекрываются, в результате чего образуется теневая зона, в пределах которой измерения дальности невозможны.

Наиболее близким по технической сущности к предлагаемому является техническое решение, направленное на сокращение теневой зоны [3]. Этот лазерный измеритель расстояний содержит передающий канал для формирования пучка зондирующего излучения и направления его на цель, параллельный ему приемный канал для приема отраженного целью сигнала, причем передающий канал включает лазерный излучатель и передающую оптическую систему, приемный канал включает фотоприемное устройство и приемный объектив, а поля зрения передающего и приемного каналов перекрываются на дальности R1, соответствующей протяженности теневой зоны, определяемой взаимным расположением передающего и приемного каналов. В этом измерителе расстояний база между передающим и приемным каналами сокращена, благодаря чему и обеспечивается укорочение теневой зоны.

Недостатком этого устройства является принципиальная невозможность сокращения теневой зоны до расстояний порядка нескольких сантиметров вследствие наличия элементов конструкции (оправы, бленды, светозащитные шторки и т.п), препятствующих дальнейшему сближению передающего и приемного каналов.

Задачей изобретения является уменьшение минимальной измеряемой дальности путем сокращения теневой зоны аппаратной функции.

Поставленная задача решается за счет того, что в известном лазерном измерителе расстояний, содержащем передающий канал для формирования пучка зондирующего излучения и направления его на цель, включающий лазерный излучатель и передающую оптическую систему, параллельный ему приемный канал для приема отраженного целью сигнала, включающий фотоприемное устройство и приемный объектив, введен световод, входное отверстие которого расположено рядом с выходным отверстием оптической системы передающего канала, а его выходное отверстие направлено на чувствительную площадку фотоприемного устройства приемного канала, причем входная оптическая ось световода направлена под таким углом к оптической оси передающего канала, чтобы энергия излучения, отраженного от целей, расположенных в диапазоне дальностей от R0 до R1, поступающая на чувствительную площадку фотоприемного устройства, соответствовала порогу срабатывания последнего,

где R0<R1 - заданная минимальная измеряемая дальность;

R1 - протяженность теневой зоны, образуемой в диапазоне дальностей, где поля зрения передающего и приемного каналов не перекрываются.

На фиг.1 представлена блок-схема лазерного измерителя расстояний. На фиг.2 - его функциональная схема. Фиг.3 поясняет характер аппаратной функции и ее теневой зоны. На фиг 4 показано пересечение полей зрения передающего, приемного и световодного каналов в сечении D картинной плоскости измерителя на расстоянии R0<R<R1.

Лазерный измеритель расстояний (фиг.1) содержит три оптических канала. Передающий канал 1 для формирования пучка зондирующего излучения включает лазерный излучатель 2 и передающую оптическую систему 3. Параллельный передающему приемный канал 4 для приема отраженного целью сигнала включает фотоприемное устройство 5 и приемный объектив 6. Третий оптический канал образован световодом 7, оптически связанным по выходу с фотоприемным устройством 5 и установленным так, чтобы на свой вход принимать излучение, отраженное от целей в заданном диапазоне дальностей.

На фиг.2 показана функциональная схема устройства. Входное отверстие световода 7 расположено рядом с выходным отверстием оптической системы 3 передающего канала, а его выходное отверстие направлено на чувствительную площадку фотоприемного устройства 5, причем входная оптическая ось световода направлена под таким углом β к оптической оси передающего канала, чтобы энергия излучения, отраженного от целей, расположенных в диапазоне дальностей от R0 до R1, поступающая на чувствительную площадку фотоприемного устройства, соответствовала порогу срабатывания последнего, где R0<R1 - заданная минимальная измеряемая дальность.

Устройство работает следующим образом.

При излучении зондирующего импульса с помощью лазерного излучателя 2 на выходе передающей оптической системы формируется расходящийся пучок излучения, образующий поле передающего канала (фиг.3). Отраженное целью излучение попадает в поле приемного канала и с помощью приемного объектива 6 фокусируется на чувствительной площадке фотоприемного устройства 5. Дальность до цели R определяют по известной зависимости [1] R=ct/2, где с - скорость света, t - время между моментом излучения зондирующего импульса и моментом срабатывания фотоприемного устройства от излучения, отраженного целью.

В дальней зоне при расстоянии до цели R>R2 поля излучающего и приемного каналов полностью перекрываются, обеспечивая попадание на фотоприемное устройство достаточной для его срабатывания энергии излучения, отраженного целью.

На малых расстояниях до цели поля излучающего и приемного каналов перекрываются не полностью, а в теневой зоне при R<R1 (фиг.3) вообще не перекрываются, что делает невозможным измерение при расстояниях до цели R<R1.

Световод 7 формирует дополнительное поле α приемного канала, перекрывающееся с полем передающего канала на дальностях R0<R<R1 (фиг.4), и соответственно формирует дополнительную аппаратную функцию A0(R), показанную на фиг.3 пунктиром.

Результирующая аппаратная функция A(R)=A0(R)+A1(R) предлагаемого устройства обеспечивает возможность измерения дальностей при расстояниях до цели R0<R, причем R0<R1. Введение световода позволяет сократить теневую зону и соответственно минимальную измеряемую дальность с 5-30 м до 0,05-0,2 м.

Таким образом предлагаемый лазерный измеритель расстояний обеспечивает решение поставленной задачи - уменьшение минимальной измеряемой дальности путем сокращения теневой зоны аппаратной функции.

Источники информации

1. Ермаков Б.А., Возницкий М.В. Получение и обработка информации в импульсных лазерных дальномерах // Оптический журнал №10 (1993), - с.15-32.

2. С.А.Даничкин. Границы действия геометрического фактора лидара. IV Всесоюзный симпозиум по лазерному зондированию атмосферы. Тезисы докладов. Томск, 1976, с.79-82.

3. Патент США №4737624 - прототип.

Лазерный измеритель расстояний, содержащий передающий канал для формирования пучка зондирующего излучения и направления его на цель, включающий лазерный излучатель и передающую оптическую систему, параллельный ему приемный канал для приема отраженного целью сигнала, включающий фотоприемное устройство и приемный объектив, отличающийся тем, что введен световод, входное отверстие которого расположено рядом с выходным отверстием оптической системы передающего канала, а его выходное отверстие направлено на чувствительную площадку фотоприемного устройства приемного канала, причем входная оптическая ось световода направлена под таким углом к оптической оси передающего канала, чтобы энергия излучения, отраженного от целей, расположенных в диапазоне дальностей от R0 до R1, поступающая на чувствительную площадку фотоприемного устройства, соответствовала порогу срабатывания последнего, где R0<R1 - заданная минимальная измеряемая дальность; R1 - протяженность теневой зоны, образуемой в диапазоне дальностей, где поля зрения передающего и приемного каналов не перекрываются.



 

Похожие патенты:

Изобретение относится к области измерительной техники и приборостроения и может быть использовано в качестве лазерного локатора для обнаружения и измерения координат и скорости низколетящих ракет морского базирования в интересах ВМФ страны.

Изобретение относится к лазерной технике, а именно к лазерной дальнометрии. .

Изобретение относится к лазерной технике, а именно к лазерной дальнометрии. .

Изобретение относится к приборостроению и может быть использовано в качестве имитатора импульсных высокочастотных сигналов, образуемых на выходе матричного фотоприемного устройства с размерностью m n - элементов в матрице, принимающего лазерные излучения, переотраженные бликами морской поверхности, хаотически распределенные во времени и по пространству, при решении локационной задачи по низколетящим ракетам морского базирования (m - число столбцов, n - число строк в матрице).

Изобретение относится к областям лазерной техники и электроники и может быть использовано при синтезе лазерных доплеровских локаторов по низколетящим крылатым ракетам морского базирования, использующих переотражения лазерного излучения от бликов морской поверхности, на которую падает рассеянное лазерное излучение, облучающее боковую поверхность крылатой ракеты.

Изобретение относится к лазерной технике. .

Изобретение относится к лазерной доплеровской локации и может быть использовано при синтезе устройств обработки информации о местоположении и скорости низколетящих ракет морского базирования с помощью лазерных доплеровских локаторов с непрерывным режимом излучения и растровым сканированием по угловым координатам.

Изобретение относится к области оптической электроники и может быть использовано в прецизионных системах обеспечения вхождения в связь, системах точного нацеливания узких оптических лучей и др.

Изобретение относится к области медицинской техники, а именно к устройствам для регистрации и оценки отклонения фазового сдвига земного излучения в двух разных пространственных точках.

Изобретение относится к лазерной технике, а именно к лазерной дальнометрии. .

Изобретение относится к технике лазерного, светового излучения и, в частности, может быть использовано для определения положения лазерного излучателя. .

Изобретение относится к лазерной технике, а именно к лазерной дальнометрии. .

Изобретение относится к лазерной технике, а именно к лазерной дальнометрии. .

Изобретение относится к технике обнаружения объектов, а именно к оптико-электронным системам видения удаленных объектов с использованием лазерной подсветки в инфракрасном спектральном диапазоне, и может быть использовано для разработки и создания тепловизионных систем и приборов, предназначенных для обнаружения и распознавания целей на больших расстояниях.

Изобретение относится к оптическому приборостроению, в частности к устройствам наблюдения с измерением дальности до объекта. .

Изобретение относится к оптическому приборостроению, в частности к многоканальным мультиспектральным оптико-электронным приборным комплексам с лазерными дальномерами (далее комплексы), и может найти применение при создании всесуточных систем обнаружения, наблюдения и сопровождения объектов.

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. .

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии. .

Изобретение относится к лазерной технике, а именно к аппаратуре лазерной дальнометрии
Наверх