Комплексный гидравлический канал вертикального нефтяного электронасосного агрегата

Изобретение относится к насосостроению и может быть использовано в нефтяной и других отраслях промышленности. Канал включает последовательно соединенные корпусами и проточными полостями центробежный насос, трансмиссию, бустер и заборную трубу. На участке заборной трубы канал образован ее корпусом. На участке бустера канал ограничен с внешней стороны корпусом бустера, а с внутренней стороны втулкой шнека, снабженной крыльчаткой, и корпусом спрямляющего аппарата. Канал на входе в шнек содержит антикавитационный участок и переменное сужающееся по ходу потока сечение канала. На участке трансмиссии канал ограничен с внешней стороны сборным корпусом секции, а с внутренней стороны на участке соединительного корпуса с образованием кольцевой проточной полости - неподвижной относительно корпуса разделительной трубой-оболочкой. На участках концевых корпусов секции, содержащих опоры с подшипниками, последние соединены с соответствующим корпусом продольными ребрами с образованием сотового гидропрозрачного участка канала. Изобретение направлено на создание канала насоса, предназначенного для перекачивания нефтесодержащих жидкостей с повышенной стабильностью, долговечностью работы, увеличенным КПД и сниженной энергоемкостью в безкавитационных режимах. 7 з.п. ф-лы, 3 ил.

 

Изобретение относится к насосостроению, а именно к вертикальным нефтяным электронасосным агрегатам, и может быть использовано в нефтяной, газовой, химической и других отраслях промышленности.

Известен вертикальный химический электронасосный агрегат для перекачивания агрессивных сред, содержащий электродвигатель, сопряженный с ним шнекоцентробежный насос, снабженный всасывающим и выходным патрубками. С целью повышения антикавитационных показателей насоса всасывающий патрубок содержит подкачивающий шнек, закрепленный на валу шнекоцентробежного насоса (RU 2006122670 A, опубл. 10.01.2008).

Известен шнекоцентробежный насос, содержащий корпус, установленный в нем направляющий аппарат и подвижно на передней и задней подшипниковых опорах ротор, включающий шнековый преднасос и центробежные колеса, имеющие втулки и диски, в которых вблизи втулки выполнены сквозные отверстия. В дисках с обеих сторон выполнены каналы, равномерно распределенные по окружности и ограниченные крышками. Передняя опора ротора выполнена в виде подшипника качения, внутренняя обойма которого прочно скреплена с наружными кромками шнека (RU 2252337 C2, опубл. 20.05.2005).

Известен вертикальный шнеково-центробежный насос, содержащий корпус с установленными в нем центробежным рабочим колесом и предвключенным шнеком, размещенным внутри нижней части удлиненной трубы, консольно закрепленной к центральной всасывающей части корпуса. Колесо и шнек соединены между собой удлиненной трансмиссией. На всасывающем участке трубы выполнен один или более обратных клапанов, например, в виде расположенных выше предвключенного шнека окон, снабженных нормально закрытыми лепестковыми упругими элементами, выполненных с возможностью открытия за счет давления разрежения перекачиваемой жидкости при ее полном заполнении вращающегося центробежного рабочего колеса (RU 2305208 C1, опубл. 27.08.2007).

Недостатками известных технических решений являются относительно невысокие надежность и долговечность работы и обусловленные конструктивными решениями невысокие гидродинамические характеристики, что приводит к повышенному износу рабочих узлов и снижению КПД насосов в процессе эксплуатации.

Задача, решаемая изобретением, заключается в разработке комплексного гидравлического канала вертикального нефтяного электронасосного агрегата, предназначенного для транспортирования любых видов нефтесодержащих жидкостей от товарной нефти и нефтепродуктов до сырой и обводненной нефти с высоким содержанием воды, а также твердых дискретных частиц, либо пластовой или чистой воды, с повышенной стабильностью и долговечностью работы при увеличении КПД и снижении энергоемкости при перекачивании, в том числе с перекачиванием указанных сред в безкавитационных режимах.

Поставленная задача решается тем, что комплексный гидравлический канал вертикального нефтяного электронасосного агрегата, согласно изобретению, включает последовательно соединенные корпусами и проточными полостями центробежный насос, трансмиссию, содержащую не менее одной сборной секции, бустер и заборную трубу, при этом на участке заборной трубы упомянутый канал образован ее корпусом, который выполнен, предпочтительно, круглоцилиндрическим, открытым с торцов, верхним из которых сообщен с корпусом бустера, на участке бустера упомянутый канал ограничен с внешней стороны корпусом бустера, а с внутренней стороны снабженной крыльчаткой втулкой шнека и корпусом спрямляющего аппарата, причем обтекаемая поверхность втулки и ограниченная ею сторона проточной полости гидравлического канала имеют форму тела вращения - ундулоида с вогнуто-выпуклой образующей - кривой, расположенной в условной радиально-осевой плоскости шнека с переменным радиусом по длине его оси, причем канал на входе в шнек содержит антикавитационный участок и переменное сужающееся по ходу потока сечение канала до обеспечения возможности практически бесступенчатого перехода упомянутой кольцевой полости на участке шнека в кольцевую полость канала на участке спрямляющего аппарата бустера, при этом на участке каждой сборной секции трансмиссии гидравлический канал ограничен с внешней стороны сборным корпусом секции, включающим два связанных соединительным корпусом концевых корпуса - верхний и нижний, а с внутренней стороны на участке соединительного корпуса с образованием кольцевой проточной полости ограничен неподвижной относительно корпуса разделительной трубой-оболочкой, в которой с возможностью передачи крутящего момента изолированно от потока установлен вал ротора трансмиссии, кроме того, на участках концевых корпусов секции, содержащих опоры с подшипниками, последние соединены с соответствующим корпусом продольными ребрами с образованием сотового гидропрозрачного участка канала.

При этом проточная полость центробежного насоса может быть образована совокупностью проточных полостей входного кольцевого канала, напорных секций, включая зону размещения крыльчатки и проточную полость направляющего аппарата, предназначенные для работы со ступенчатым нарастанием давления перекачиваемой среды, а также проточной полостью секции отвода с выходным патрубком с изогнутой или линейной осевой конфигурацией.

По крайней мере, выходная часть патрубка отвода может быть выполнена примыкающей к внутренней полости отвода с радиальной ориентацией его оси относительно продольной оси напорных секций насоса.

По крайней мере, выходная часть патрубка отвода может быть выполнена тангенциально примыкающей к внутренней полости отвода.

Его внутренняя стенка, по меньшей мере, на большей части может быть образована валами роторов центробежного насоса, трансмиссии и бустера, при этом канал, по меньшей мере, на участке бустера и трансмиссии и входного участка в центробежный насос выполнен с кольцевым рабочим сечением, которое в опорных участках бустера, секций трансмиссии и насоса разделено продольными опорными ребрами на сотовые гидропрозрачные участки канала.

В составе электронасосного агрегата гидравлический канал может быть предназначен для откачки товарной нефти из безнапорной емкости и подачи во всасывающую магистраль, например, нефтеперекачивающей станции.

В составе электронасосного агрегата гидравлический канал может быть предназначен для откачки обводненной нефти с содержанием воды до 100% и с минерализацией до 200 г/л.

В составе электронасосного агрегата гидравлический канал может быть предназначен для откачки низковязких жидкостей типа дизельного топлива и газоконденсата.

Технический результат, достигаемый приведенной совокупностью признаков, состоит в разработке комплексного гидравлического канала вертикального нефтяного электронасосного агрегата, предназначенного для транспортирования любых видов нефтесодержащих жидкостей от товарной нефти и нефтепродуктов до сырой и обводненной нефти с высоким содержанием воды, а также твердых дискретных частиц, либо пластовой или чистой воды, с повышенной стабильностью и долговечностью работы при увеличении КПД и снижении энергоемкости при перекачивании, в том числе с перекачиванием указанных сред в безкавитационных режимах, что достигается безкавитационными режимами работы за счет найденных в изобретении технических решений всех составляющих канала от бустера до центробежного насоса включительно, а также оригинальных компактных полифункционально исполненных сборных секций трансмиссии и найденной в изобретении размещенной на валу ротора бустера втулки шнека с антикавитационной конфигурацией, а также полифункционального решения ограничивающего изнутри кольцевые проходные сечения комплексного гидравлического канала.

Сущность изобретения поясняется чертежами, где:

На фиг.1 изображен вертикальный нефтяной электронасосный агрегат, общий вид;

На фиг.2 - основной центробежный насос, частичный вертикальный разрез;

На фиг.3 - заборная труба, бустер и трансмиссия в сборе, частичный вертикальный разрез.

Комплексный гидравлический канал вертикального нефтяного электронасосного агрегата, предназначенный для транспортирования перекачиваемой среды, включает последовательно соединенные корпусами и проточными полостями центробежный насос 1, трансмиссию 2, содержащую не менее одной сборной секции 3, бустер 4 и заборную трубу 5.

На участке заборной трубы 5 гидравлический канал образован ее корпусом 6, который выполнен, предпочтительно, круглоцилиндрическим, открытым с торцов, верхним из которых сообщен с корпусом 7 бустера 4.

На участке бустера гидравлический канал ограничен с внешней стороны корпусом 7 бустера 4, а с внутренней стороны снабженной крыльчаткой 8 втулкой 9 шнека 10 и корпусом спрямляющего аппарата 11. Обтекаемая поверхность втулки 9 и ограниченная ею сторона проточной полости 12 гидравлического канала имеют форму тела вращения - ундулоида с вогнуто-выпуклой образующей - кривой, расположенной в условной радиально-осевой плоскости шнека 10 с переменным радиусом по длине его оси. Гидравлический канал на входе в шнек 10 содержит антикавитационный участок 13 и переменное сужающееся по ходу потока сечение канала до обеспечения возможности практически бесступенчатого перехода упомянутой кольцевой проточной полости 12 на участке шнека 8 в кольцевую полость канала на участке спрямляющего аппарата 11 бустера 4.

На участке каждой сборной секции 3 трансмиссии 2 гидравлический канал ограничен с внешней стороны сборным корпусом секции, включающим два связанных соединительным корпусом 14 концевых корпуса 15 - верхний и нижний. С внутренней стороны на участке соединительного корпуса 14 с образованием кольцевой проточной полости 16 гидравлический канал ограничен неподвижной относительно корпуса разделительной трубой-оболочкой 17, в которой с возможностью передачи крутящего момента изолированно от потока установлен вал 18 ротора трансмиссии 2. На участках концевых корпусов 15 секции 3, содержащих опоры с подшипниками 19, последние соединены с соответствующим корпусом продольными ребрами 20 с образованием сотового гидропрозрачного участка 21 канала.

Проточная полость 22 центробежного насоса 1 образована совокупностью проточных полостей входного кольцевого канала 23, напорных секций 24, включая зону размещения крыльчатки 25 и проточную полость направляющего аппарата 26, предназначенные для работы со ступенчатым нарастанием давления перекачиваемой среды, а также проточной полостью секции 27 отвода с выходным патрубком 28 с изогнутой или линейной осевой конфигурацией.

По крайней мере, выходная часть патрубка 28 отвода выполнена примыкающей к внутренней полости отвода с радиальной ориентацией его оси относительно продольной оси напорных секций 24 насоса 2.

По крайней мере, выходная часть патрубка 28 отвода выполнена тангенциально примыкающей к внутренней полости отвода.

Внутренняя стенка гидравлического канала, по меньшей мере, на большей части образована валами роторов 29, 18, 30 соответственно центробежного насоса 1, трансмиссии 2 и бустера 4. Гидравлический канал, по меньшей мере, на участке бустера 4 и трансмиссии 2 и входного участка в центробежный насос 1 выполнен с кольцевым рабочим сечением, которое в опорных участках бустера 4, секций трансмиссии 4 и насоса 1 разделено продольными опорными ребрами на сотовые гидропрозрачные участки канала.

В составе электронасосного агрегата гидравлический канал предназначен для откачки товарной нефти из безнапорной емкости и подачи во всасывающую магистраль, например, нефтеперекачивающей станции.

В составе электронасосного агрегата гидравлический канал предназначен для откачки обводненной нефти с содержанием воды до 100% и с минерализацией до 200 г/л.

В составе электронасосного агрегата гидравлический канал предназначен для откачки низковязких жидкостей типа дизельного топлива и газоконденсата.

Работа осуществляется следующим образом.

При включении электродвигателя 31 крутящий момент по валопроводу поступает на вал 29 ротора центробежного насоса 1, на вал 18 ротора трансмиссии 2 и на вал 30 ротора бустера 4, приводя в движение крыльчатку 8 шнека 10. В последнюю через заборную трубу 5 поступает перекачиваемая среда - товарная нефть, нефтепродукты, газоконденсат или обводненная нефть, и, обтекая антикавитационный участок 13 втулки 9 шнека 10 и каналы спрямляющего аппарата 11, поток приобретает упорядочный характер и поступает в проточную полость 16 трансмиссии 2 с давлением, созданным в бустере 4. Затем перекачиваемая среда проходит через последовательные участки проточной полости 16 трансмиссии 2 и поступает в напорные секции 24 центробежного насоса 1, приобретая в каждой ступенчатое повышение давления, суммарно возрастающее при входе в секцию 27 отвода пропорционально числу напорных секций 24.

Таким образом, за счет найденных в изобретении решений всех составляющих канала от бустера до центробежного насоса включительно, а также оригинальных компактных полифункционально исполненных сборных секций трансмиссии и размещенной на валу ротора бустера втулки шнека с антикавитационной конфигурацией, а также полифункционального решения ограничивающего изнутри кольцевые проходные сечения комплексного гидравлического канала, обеспечивается повышение стабильности и долговечности работы агрегата при увеличенном КПД и снижение энергоемкости при перекачивании любых видов нефтесодержащих жидкостей.

1. Комплексный гидравлический канал вертикального нефтяного электронасосного агрегата, предназначенный для транспортирования перекачиваемой среды, характеризующийся тем, что включает последовательно соединенные корпусами и проточными полостями центробежный насос, трансмиссию, содержащую не менее одной сборной секции, бустер и заборную трубу, при этом на участке заборной трубы упомянутый канал образован ее корпусом, который выполнен предпочтительно круглоцилиндрическим, открытым с торцов, верхним из которых сообщен с корпусом бустера, на участке бустера упомянутый канал ограничен с внешней стороны корпусом бустера, а с внутренней стороны - снабженной крыльчаткой втулкой шнека и корпусом спрямляющего аппарата, причем обтекаемая поверхность втулки и ограниченная ею сторона проточной полости гидравлического канала имеют форму тела вращения - ундулоида с вогнуто-выпуклой образующей - кривой, расположенной в условной радиально-осевой плоскости шнека с переменным радиусом по длине его оси, причем канал на входе в шнек содержит антикавитационный участок и переменное сужающееся по ходу потока сечение канала до обеспечения возможности практически бесступенчатого перехода упомянутой кольцевой полости на участке шнека в кольцевую полость канала на участке спрямляющего аппарата бустера, при этом на участке каждой сборной секции трансмиссии гидравлический канал ограничен с внешней стороны сборным корпусом секции, включающим два связанных соединительным корпусом концевых корпуса - верхний и нижний, а с внутренней стороны на участке соединительного корпуса с образованием кольцевой проточной полости ограничен неподвижной относительно корпуса разделительной трубой-оболочкой, в которой с возможностью передачи крутящего момента изолированно от потока установлен вал ротора трансмиссии, кроме того, на участках концевых корпусов секции, содержащих опоры с подшипниками, последние соединены с соответствующим корпусом продольными ребрами с образованием сотового гидропрозрачного участка канала.

2. Комплексный гидравлический канал вертикального нефтяного электронасосного агрегата по п.1, отличающийся тем, что проточная полость центробежного насоса образована совокупностью проточных полостей входного кольцевого канала, напорных секций, включая зону размещения крыльчатки и проточную полость направляющего аппарата, предназначенные для работы со ступенчатым нарастанием давления перекачиваемой среды, а также проточной полостью секции отвода с выходным патрубком с изогнутой или линейной осевой конфигурацией.

3. Комплексный гидравлический канал вертикального нефтяного электронасосного агрегата по п.2, отличающийся тем, что, по крайней мере, выходная часть патрубка отвода выполнена примыкающей к внутренней полости отвода с радиальной ориентацией его оси относительно продольной оси напорных секций насоса.

4. Комплексный гидравлический канал вертикального нефтяного электронасосного агрегата по п.2, отличающийся тем, что, по крайней мере, выходная часть патрубка отвода выполнена тангенциально примыкающей к внутренней полости отвода.

5. Комплексный гидравлический канал вертикального нефтяного электронасосного агрегата по п.1, отличающийся тем, что его внутренняя стенка, по меньшей мере, на большей части образована валами роторов центробежного насоса, трансмиссии и бустера, при этом канал, по меньшей мере, на участке бустера и трансмиссии и входного участка в центробежный насос выполнен с кольцевым рабочим сечением, которое в опорных участках бустера, секций трансмиссии и насоса разделено продольными опорными ребрами на сотовые гидропрозрачные участки канала.

6. Комплексный гидравлический канал вертикального нефтяного электронасосного агрегата по п.1, отличающийся тем, что в составе электронасосного агрегата он предназначен для откачки товарной нефти из безнапорной емкости и подачи во всасывающую магистраль, например, нефтеперекачивающей станции.

7. Комплексный гидравлический канал вертикального нефтяного электронасосного агрегата по п.1, отличающийся тем, что в составе электронасосного агрегата он предназначен для откачки обводненной нефти с содержанием воды до 100% и с минерализацией до 200 г/л.

8. Комплексный гидравлический канал вертикального нефтяного электронасосного агрегата по п.1, отличающийся тем, что в составе электронасосного агрегата он предназначен для откачки низковязких жидкостей типа дизельного топлива и газоконденсата.



 

Похожие патенты:

Изобретение относится к насосостроению и может быть использовано в нефтяной и др. .

Изобретение относится к насосостроению. .

Изобретение относится к насосостроению, а именно к вертикальным электронасосным агрегатам для нефтяной, газовой, химической и др. .

Изобретение относится к насосостроению, а именно к вертикальным нефтяным электронасосным агрегатам, и может быть использовано в нефтяной, газовой, химической и других отраслях промышленности.

Изобретение относится к насосостроению и может быть использовано для перекачки жидкостей. .

Изобретение относится к насосостроению. .

Изобретение относится к насосостроению. .

Изобретение относится к насосостроению и может быть использовано, в том числе в ракетной технике. .

Изобретение относится к насосостроению и может быть использовано в том числе в ракетной технике. .

Изобретение относится к насосостроению. .

Изобретение относится к вентиляторным блокам со свободным радиальным рабочим колесом, предназначенным для использования преимущественно в канальных вентиляторах.

Изобретение относится к центробежным вентиляторам, предназначенным для использования в вытяжных колпаках или вытяжных устройствах для дыма (дымососах), и обеспечивает разделение паров жидкостей и снижение шума, производимого разделителем.

Изобретение относится к центробежным насосам для транспортирования по трубопроводам гидросмеси. .

Изобретение относится к компрессоростроению. .

Изобретение относится к области транспортного машиностроения. .

Изобретение относится к отрасли машиностроения и может использоваться в питательных насосах типа ПЭ, которые применяются на тепловых и атомных электростанциях. .

Изобретение относится к насосостроению и может быть использовано в нефтяной и др. .
Наверх