Способ заправки тепловой трубы теплоносителем

Изобретение относится к теплотехнике, а именно к способу заправки тепловой трубы теплоносителем. Способ заправки тепловой трубы теплоносителем включает операции очистки корпуса и фитиля, откачки и дегазации тепловой трубы, ввода дозы теплоносителя внутрь трубы, при этом после операции очистки корпуса и фитиля внутренний объем трубы заполняется как минимум одним раствором на основе теплоносителя, в состав которого могут входить ионы из следующего ряда металлов: медь, серебро, никель, олово, золото, платина, палладий. Для получения результата, управляемого во времени, в растворе, помещенном внутрь тепловой трубы и содержащем ионы из приведенного ряда металлов, создают дрейф этих ионов. Технический результат - улучшение изотропности и теплопроводности внутренней структуры тепловой трубы, повышение адаптируемости базового конструкционного материала тепловой трубы к различным видам теплоносителя. 1 з.п. ф-лы.

 

Изобретение относится к технологии изготовления тепловых труб, а именно к способу заправки тепловой трубы теплоносителем.

Известен способ заправки тепловой трубы теплоносителем, включающий вакуумирование тепловой трубы и подачу в нее насыщенного пара хладагента с последующей герметизацией трубы. Недостатком известного способа является то, что после сборки тепловой трубы не проводится ее химическая очистка, это приводит к тому, что существенно уменьшается смачиваемость поверхности фитиля теплоносителем и, как следствие, снижается эффективность теплопереноса, а иногда и блокируется работа тепловой трубы в целом [RU №2383839].

Наиболее близким к предлагаемому способу по технической сущности является способ заполнения тепловых труб теплоносителем, включающий дегазацию трубы, промывку теплоносителем с протоком теплоносителя через трубу и сливом его в отдельную емкость и заполнение очищенным теплоносителем [Ивановский М.Н. Технологические основы тепловых труб. - М.: Атомиздат, 1980 г. с.60-62; 63-71].

Недостатком известного способа является невозможность ростовой модификации внутренней структуры тепловой трубы как в процессе, так и после операции промывки.

Задачей изобретения является повышение химической инертности внутренней структуры тепловой трубы к различным видам теплоносителя и универсальности способа промывки тепловой трубы.

Технический результат заявляемого решения выражен в улучшении изотропности и теплопроводности внутренней структуры и повышении адаптируемости базового конструкционного материала тепловой трубы к различным видам теплоносителя.

Для достижения технического результата предложен способ заправки тепловой трубы теплоносителем путем очистки корпуса и фитиля, откачки и дегазации тепловой трубы, ввода дозы теплоносителя внутрь трубы, при этом после операции очистки корпуса и фитиля внутренний объем трубы заполняется как минимум одним раствором на основе теплоносителя, в состав которого могут входить ионы из следующего ряда металлов: медь, серебро, никель, олово, золото, платина, палладий. Для получения результата, управляемого во времени, в растворе, помещенном внутрь тепловой трубы и содержащем ионы из приведенного ряда, создают дрейф этих ионов.

За счет прямого контакта фитиля и внутренней поверхности корпуса тепловой трубы с раствором на основе теплоносителя, содержащего, по крайней мере, один вид иона из заявленного ряда металлов, происходит взаимодействие ионов металла с атомами поверхности трубы и фитиля [Н.Л.Глинка. Общая химия. Учебник для ВУЗов. - Л.: Химия, 1985 г.]. В результате одновременно изменяется химический состав и поверхности корпуса трубы, и фитиля, т.е. происходит модификация внутренней структуры тепловой трубы, улучшающая ее изотропность. При этом модифицированная поверхность наследует физико-химические свойства того металла, ион которого присутствовал в растворе [И.Д.Груев, Н.И.Матвеев, Н.Г.Сергеева. Электрохимические покрытия изделий радиоэлектронной аппаратуры. Справочник. - М.: Радио и связь, 1988 г.]. Это позволяет независимо от свойств базового конструкционного материала корпуса тепловой трубы и фитиля использовать наиболее эффективный тип теплоносителя, т.е повышается адаптируемость конструкционного материала тепловой трубы [М.Н.Ивановский, В.П.Сорокин, Б.А.Чулков, И.В.Ягодкин. Технологические основы тепловых труб. - М.: Атомиздат, 1980 г.].

Способ осуществляется следующим образом.

После проведения известной операции очистки корпуса и фитиля тепловая труба через отверстие полностью заполняется раствором на основе теплоносителя, содержащим ионы, по крайней мере, одного вида из заявленного ряда металлов. В результате протекания восстановительной химической реакции ионы металла восстанавливаются до нейтральных атомов, которые в виде пленки осаждаются как на поверхности фитиля, так и на поверхности корпуса тепловой трубы [Н.Л.Глинка. Общая химия. Учебник для ВУЗов. - Л.: Химия, 1985 г.]. Для осуществления локального осаждения металлической пленки используется частичное заполнение раствором тепловой трубы. С целью получения результата, управляемого во времени, в растворе, помещенном внутрь тепловой трубы и содержащем ионы из приведенного ряда, создают дрейф этих ионов, например, с помощью приложения электрического поля. Причем к раствору теплоносителя прикладывается положительный полюс источника тока, а к корпусу и фитилю тепловой трубы прикладывается отрицательный полюс источника тока.

В результате протекания управляемой электрохимической реакции ионы металла восстанавливаются до нейтральных атомов, которые в виде пленки заданной толщины осаждаются как на поверхности фитиля, так и на поверхности корпуса тепловой трубы [A.M.Ямпольский. Краткий справочник гальванотехника. - Л.: Машиностроение. 1981 г.]. Дальнейшие операции заправки тепловой трубы осуществляются согласно прототипу.

Примеры реализации способа.

Пример 1

Тепловая труба, корпус и сеточный фитиль которой изготовлены из нержавеющей стали, после проведения известной операции очистки корпуса и фитиля полностью заполняется раствором золотохлористоводородной кислоты (Н[АuСl4]) на основе деионизованной воды с концентрацией золота 40%. В результате протекания гетерогенной химической реакции разложения золотохлористоводородной кислоты, золото в виде пленки осаждается как на поверхности фитиля, так и на внутренней поверхности корпуса тепловой трубы, что приводит к повышению теплопроводности и химической инертности внутренней структуры тепловой трубы. После проведения данной операции исходный раствор удаляется одним из известных способов.

Пример 2

Тепловая труба из профиля алюминиевого сплава с фитилем в виде аксиальных канавок каплевидной формы после проведения известной операции очистки корпуса и фитиля полностью заполняется водным раствором (на основе деионизованной воды) следующего состава: медь -20 г/л; железистосинеродистый калий - 180 г/л; сегнетова соль - 90 г/л; едкое кали - 8 г/л. К корпусу тепловой трубы прикладывается отрицательный полюс источника тока, а на раствор через дополнительный электрод прикладывается положительный полюс. Плотность электрического тока поддерживают на уровне от 1,5 до 2 А/дм2. В результате протекания электрохимической реакции ионы меди совершают дрейф к отрицательно заряженной внутренней поверхности трубы, восстанавливаются до нейтральных атомов, которые в виде пленки осаждаются как на поверхности фитиля, так и на поверхности корпуса тепловой трубы, при этом повышается теплопроводность и химическая инертность внутренней структуры тепловой трубы, например, при прямом длительном контакте с водой. После проведения данной операции исходный раствор удаляется одним из известных способов. Дальнейшие операции заправки тепловой трубы осуществляются согласно прототипу.

Таким образом, предлагаемое изобретение позволяет:

- улучшить изотропность и теплопроводность внутренней структуры тепловой трубы;

- повысить адаптируемость базового конструкционного материала тепловой трубы к различным видам теплоносителя.

1. Способ заправки тепловой трубы теплоносителем, включающий операции: очистки корпуса и фитиля, откачки и дегазации тепловой трубы, ввода дозы теплоносителя внутрь трубы, отличающийся тем, что после операции очистки корпуса и фитиля внутренний объем трубы заполняется как минимум одним раствором на основе теплоносителя, в состав которого входят ионы из следующего ряда металлов: медь, серебро, никель, олово, золото, платина, палладий.

2. Способ по п.1, отличающийся тем, что в растворе, содержащем ионы из приведенного ряда металлов, создают дрейф этих ионов.



 

Похожие патенты:

Изобретение относится к области энергетического машиностроения и может быть использовано, в частности, в качестве двигателя летательного аппарата (Л.А.). .

Изобретение относится к теплоэнергетике и может быть использовано для проведения процессов теплообмена, в частности, для утилизации низкопотенциальной тепловой энергии.

Изобретение относится к космической технике и касается обеспечения требуемого температурного режима в герметичных отсеках космических аппаратов и станций. .

Изобретение относится к теплотехнике, а именно к тепловым трубам плоского типа, которые могут применяться для охлаждения печатных плат электронной аппаратуры. .

Изобретение относится к теплотехнике, а именно к методам контроля качества тепловых труб. .

Изобретение относится к области технологического оборудования для осуществления газофазных каталитических процессов и может быть использовано в химической, нефтехимической и других областях промышленности, использующих газофазные каталитические процессы.

Изобретение относится к области теплотехники и может быть использовано в тепловых трубах. .

Изобретение относится к теплоэнергетике и может быть использовано для утилизации вторичных тепловых энергоресурсов и низкопотенциальной тепловой энергии природных источников, а именно для трансформации тепловой энергии в механическую.

Изобретение относится к области теплотехники и может быть использовано в рекуператорах тепла выхлопных газов. .

Изобретение относится к области теплотехники, в частности к контурным тепловым трубам, и может быть использовано в различных системах терморегулирования, в том числе в составе космических аппаратов для эффективного отведения тепловых потоков от твердых тепловыделяющих поверхностей, а также от жидких и газообразных сред

Изобретение относится к кожухотрубчатым теплообменным аппаратам и может использоваться в химической, нефтехимической и других отраслях промышленности

Изобретение относится к области теплотехники и может быть использовано при создании регулируемых теплопередающих устройств и систем терморегулирования на их основе, в частности в космической технике, а также для обеспечения теплового режима оборудования, работающего в суровых климатических условиях

Изобретение относится к области теплотехники и может использоваться в теплообменных устройствах для отопления помещений

Изобретение относится к конструкции элементов системы отопления помещения, в частности к теплообменнику металлическому, и может быть использовано при изготовлении системы отопления помещения

Изобретение относится к технологии изготовления элементов системы отопления жилых и других зданий, в частности к способу изготовления теплообменника металлического системы отопления

Изобретение относится к технологии изготовления элементов системы отопления жилых и других зданий и может быть использовано при изготовлении теплообменника металлического системы отопления помещения. Изготавливают трубопровод в виде стенки сквозной полости с внешней поверхностью, концевыми участками, а также изготавливают внешние элементы теплопередачи и закрепляют их к одному концевому участку. Стенку сквозной полости другого концевого участка изготавливают в виде обрамляющего элемента сквозного проема, который образуют в стене помещения, при этом внешние элементы теплопередачи изготавливают в виде облицовочных элементов стены помещения из стальных пластин, или труб, или швеллеров, или уголков, или прутков, а концевые участки закрепляют между собой металлическим фиксатором. Техническим результатом заявленного изобретения является повышение эффективности теплопередачи от теплообменника к воздуху окружающей среды, а также расширение функциональных возможностей теплообменника и арсенала технических средств. 2 ил.

Изобретение относится к конструкции теплообменника, в частности к теплообменнику металлическому системы отопления помещения. Теплообменник содержит трубопровод в виде стенки сквозной полости с внешней поверхностью, концевыми участками, а также внешние элементы теплопередачи, которые закреплены к одному концевому участку. Стенка сквозной полости другого концевого участка выполнена в виде обрамляющего элемента сквозного проема, образованного в стене помещения. При этом внешние элементы теплопередачи выполнены в виде облицовочных элементов стены помещения из стальных пластин, или труб, или швеллеров, или уголков, или прутков, а концевые участки закреплены между собой металлическим фиксатором. Техническим результатом заявленного изобретения является повышение эффективности теплопередачи от теплообменника к воздуху окружающей среды, а также расширение функциональных возможностей теплообменника и арсенала технических средств. 2 ил.

Изобретение относится к системам термостатирования (СТС) энергоемкого оборудования космических объектов (КО). СТС содержит две двухполостные жидкостные термоплаты (22), на которые устанавливается оборудование. Термоплаты размещены в приборной зоне обитаемого отсека (1). Внешний радиатор (12) выполнен в виде четырех попарно диаметрально противоположных радиаторных панелей (14). Панель (14) снабжена контурной тепловой трубой с конденсатором (15), размещенным внутри панели (14), и испарителем (19) в составе конструкции автономного теплопередающего элемента (16), установленного на внешней поверхности корпуса КО рядом с панелью (14). Элемент (16) содержит также две однополостные жидкостные термоплаты (18). Испаритель (19) снабжен регулятором температуры пара (17), перекрывающим или открывающим магистраль контурной тепловой трубы в зависимости от температуры настройки. Термоплаты (22) связаны гидравлическими контурами (13, 21) с соответствующими однополостными жидкостными термоплатами (18) элементов (16). образуя замкнутые магистрали с однофазным рабочим телом. Каждый из контуров (13, 21) содержит электронасос (3), дренажно-заправочные клапаны (5), гидропневматический компенсатор (8), датчики давления (4, 7) и расхода (10), регулятор расхода (11) и электронагреватели (23). Каждый из контуров (13, 21) имеет датчики температуры рабочего тела (20). Заменяемые элементы контуров включены в магистрали через гидравлические разъемы (2). Ввод магистралей в обитаемый отсек (1) организован через гермовводы (6). СТС также содержит двухполостной газожидкостный теплообменный агрегат (24) с двумя заменяемыми вентиляторами, включенный в оба контура (13, 21). Техническим результатом изобретения является расширение области применения СТС, повышение ее надежности и снижение инерционности, а также улучшение ремонтопригодности системы. 1 ил.
Наверх