Способ построения солидуса

Изобретение относится к физико-химическому анализу вещества, а именно к способу построения солидуса. Способ включает раздельное термостатирование цилиндрических образцов, составляющих эвтектическую систему, один из которых имеет исследуемый состав, а другой является гомогенным, например, состоит из чистого вещества. При этом образцы приводят в соприкосновение при температуре исследования, превышающей эвтектическую температуру, и судят о положении фигуративной точки исследуемого сплава относительно солидуса по состоянию жидкой прослойки, образующейся между образцами. Изобретение позволяет более точно построить солидус на диаграмме состояния. 3 ил., 1 табл., 1 пр.

 

Изобретение относится к физико-химическому анализу вещества и предназначено для построения солидуса на диаграммах состояния.

Известен способ построения солидуса методом термографии путем построения линий, фиксирующих зависимость температуры от времени нагревания сплава. При появлении жидкости в процессе разогрева образца на линии, фиксирующей зависимость температуры от времени, наблюдается изменение хода. Температура, соответствующая началу изменения хода линии при нагреве, и состав сплава, выражаемый в долях компонентов, принимаются за координаты точки солидуса на диаграмме состояния системы. Совокупность таких точек для разных составов образуют линию или поверхность солидуса.

Недостатком этого способа является неточность фиксации точки перегиба на термограмме при появлении жидкости в процессе нагрева образца.

Этот недостаток устранен в способе, где построение солидуса производится с помощью отжига и последующего металлографического исследования закаленного сплава (Физическое металловедение. Под редакцией Р.Кана. Вып.II. М.: Мир, 1968. Стр. 89-90), который из известных технических решений наиболее близок по технической сущности к заявляемому объекту и является одновременно базовым объектом. Способ заключается в том, что гомогенный образец исследуемого сплава отжигают при заданной температуре, закаливают и подвергают металлографическому анализу. Эти действия производят при различных температурах. Если температура отжига для исследуемого сплава была выше температуры солидуса, то при металлографическом анализе выявляются участки, соответствующие закристаллизованной жидкости. Солидус для исследуемого сплава находится между ближайшими значениями температуры, при меньшей из которых следы жидкости отсутствуют, а при большей - выявляются с помощью металлографического анализа.

Недостатком указанного способа является отсутствие точного критерия наличия участков закристаллизованной при закалке жидкой фазы при малом количестве последней.

Предлагаемый нами способ заключается в следующем. Изготавливают два образца, один из которых представляет собой исследуемый сплав, а другой, заведомо гомогенный, например состоящий из чистого вещества, составляет с первым пару, разделенную на диаграмме состояния при температуре исследования жидкой фазой. Между образцами при температуре исследования осуществляют контактное плавление. Если при температуре исследования исследуемый образец не содержит жидкую фазу, то есть фигуративная точка на диаграмме состояния, соответствующая исследуемому сплаву при заданной температуре, расположена ниже солидуса, то в зоне контакта между образцами формируется непрерывная жидкая прослойка. Если при температуре исследования исследуемый образец содержит жидкую фазу, то есть фигуративная точка на диаграмме состояния, соответствующая исследуемому сплаву при заданной температуре, расположена выше солидуса, то жидкость из зоны контакта частично поглощается исследуемым образцом, в результате чего происходит разрыв жидкости в зоне контакта. Варьируя температуру термостата и состав исследуемого сплава, определяют положение солидуса.

Суть изобретения объясняется следующим примером. Рассмотрим построение участка солидуса двухкомпонентной системы свинец-олово, диаграмма состояния которой показана на рис.1 [http://www.himikatus.ru/art/phase-diagrl/Pb-Sn.php]. Для приготовления образцов использовали навески из металлов марок С-0000 и ОВЧ. Навески компонентов помещали в фарфоровый тигель и плавили под канифолью. Расплавленный металл втягивали в стеклянную трубку с внутренним диаметром ~3 мм. После кристаллизации металл извлекали из стеклянной трубки и нарезали отрезками по 1,5 см длиной. Торцы отрезков шлифовали в плоскости, перпендикулярной оси цилиндров.

Были изготовлены образцы чистого олова и сплавы (82,7% Pb + 17,3% Sn) и (82,1% Pb + 17,9% Sn). Проценты указаны по массе. Образец олова (A) и образец сплава (B) вставляли в отрезок стеклянной трубки (1) с противоположных сторон навстречу друг другу и закрепляли в вертикальном положении в специальном держателе, причем между образцами сохраняли зазор (рис.2). Сборку помещали в термостат с заданной температурой, более высокой, чем температура плавления эвтектики, то есть при t>183°C, но меньшей, чем температура плавления наиболее легкоплавкого компонента системы, то есть при t<232°C. Применяли жидкостный термостат. В качестве термостатирующей жидкости использовали глицерин. Температуру термостата поддерживали с точностью ±0,2°C.

После стабилизации температуры образец A с помощью подвижного штока (2) (рис.2) перемещали внутри термостата вниз до соприкосновения с образцом B и закрепляли неподвижно. Так как на диаграмме состояния (рис.1) между составами образцов A и B, то есть между чистым оловом и одним из указанных сплавов, при температуре термостата присутствует жидкая фаза, то между образцами появляется и растет жидкая прослойка - происходит контактное плавление [Савинцев П.А., Рогов В.И. Определение коэффициентов диффузии в эвтектических расплавах методом контактного плавления // Заводская лаборатория. 1969. Т.38. №2. С.195-199].

Состояние жидкой прослойки между образцами A и B является индикатором присутствия жидкой фазы в исследуемом образце. Если исследуемый образец не содержит жидкую фазу, то есть фигуративная точка исследуемого сплава на диаграмме состояния лежит ниже солидуса, то жидкая прослойка непрерывно соединяет оба образца и благодаря стеклянной трубке, в которую она заключена, сохраняет форму, близкую к цилиндрической. На рис.3a показан шлиф, полученный в результате контактного плавления пары олово-сплав (82,7% Pb + 17,3% Sn) при 204,5°C. Верхняя часть шлифа представляет собой чистое олово, нижняя - сплав. Средняя часть представляет собой закристаллизованную прослойку, образовавшуюся в результате контактного плавления. Протяженность прослойки на показанном шлифе равна 2,60 мм.

Если исследуемый образец содержит жидкую фазу, то есть фигуративная точка исследуемого сплава на диаграмме состояния лежит выше солидуса, то жидкость, образовавшаяся между образцами в результате контактного плавления, впитывается в исследуемый образец, в результате чего сплошность прослойки нарушается. В качестве примера на рис.3б показан результат контактного плавления пары олово-сплав (82,7% Pb + 17,3% Sn) при 206,5°.

Результаты испытаний приведены в таблице. Полученные результаты соответствуют известной диаграмме состояния (рис.1).

Результаты испытаний
Состав сплава, % по массе Температура термостата, °C Состояние контакта Температура солидуса, °C
204,5 Прослойка непрерывна
82,7% Pb + 17,3% Sn 205,5 Прослойка непрерывна 205,5<t<206,5
206,5 Разрыв прослойки
191,5 Прослойка непрерывна 192,5<t<193,5
82,1% Pb + 17,9% Sn 192,5 Прослойка непрерывна
193,5 Разрыв прослойки

Способ построения солидуса, включающий раздельное термостатирование цилиндрических образцов, составляющих эвтектическую систему, один из которых имеет исследуемый состав, а другой является гомогенным, например состоит из чистого вещества, отличающийся тем, что образцы приводят в соприкосновение при температуре исследования, превышающей эвтектическую температуру, и судят о положении фигуративной точки исследуемого сплава относительно солидуса по состоянию жидкой прослойки, образующейся между образцами.



 

Похожие патенты:

Изобретение относится к испытаниям смазочных материалов термоокислительной стабильности и может быть использовано в лабораториях при исследовании влияния металлов на окислительные процессы, происходящие в смазочных материалах, для определения каталитической активности.

Изобретение относится к области исследования процессов полиморфных превращений в металлах при высоких температурах и может быть использовано в процессе пластическо-деформационного формообразования материалов.

Изобретение относится к аналитическому приборостроению и, в частности, к комплексам, предназначенным для определения термической стойкости различных веществ. .

Изобретение относится к приборостроению. .

Изобретение относится к исследованию вибрационным методом с использованием измерительного сферического зонда малого диаметра сдвиговой вязкости небольших объемов жидкости с одновременным измерением ее текущей температуры в зоне измерения вязкости.

Изобретение относится к области энергетики и может быть использовано при определении теплофизических характеристик золы энергетических углей в процессах факельного сжигания для обеспечения бесшлаковочного режима.

Изобретение относится к способам определения физических условий, при которых в металлах и сплавах происходят фазовые превращения. .

Изобретение относится к измерительной технике. .

Изобретение относится к области исследования или анализа небиологических материалов путем определения их химических или физических свойств, конкретно, исследования фазовых изменений путем удаления какого-либо компонента, например, испарением, и взвешивания остатка

Изобретение относится к области физико-химического анализа и может быть использовано при тепловых испытаниях. Исследуемое тело приводят в тепловой контакт с эталонным телом по плоскости, в которой находится локальный круглый нагреватель. Через равные промежутки времени измеряют разность значений температуры между нагревателем и точкой плоскости контакта исследуемого и эталонного тел. Испытания заканчивают при превышении контролируемым динамическим параметром заданного значения. Строят зависимость текущего значения тепловой активности от температуры исследуемого тела. Структурные переходы в полимерных материалах определяют по наличию пиков на зависимости текущего значения тепловой активности от температуры исследуемого тела. 1 табл., 9 ил.

Изобретение относится к области определения физических параметров пластовых флюидов и может быть использовано в промышленных и научно-исследовательских лабораториях для определения температуры кристаллизации парафинов в нефти. Согласно заявленному способу выполняют нагрев образца нефти с однократным термостатированием, непрерывное охлаждение образца с одновременным измерением касательного напряжения сдвига. Определяют температуру начала кристаллизации по температуре, соответствующей первому скачкообразному увеличению касательного напряжения сдвига, а температуру массовой кристаллизации - по температуре, соответствующей второму скачкообразному увеличению касательного напряжения сдвига. При этом образец нагревают до температуры 60-80°C, нагрев и термостатирование образца выполняют с вращением цилиндра вискозиметра, а охлаждение образца выполняют со скоростью 1-2°C в минуту. Технический результат: повышение информативности и достоверности способа анализа. 1 ил.

Изобретение относится к области исследования процессов полиморфных превращений в металлах и твердофазных металлических сплавах и может быть использовано, например, в отделах технического контроля металлургических заводов, выпускающих титан и сплавы на его основе. Заявлен способ определения температуры полного полиморфного превращения жаропрочных двухфазных титановых сплавов (α+β)-мартенситного класса, включающий предварительную подготовку образца посредством многостадийной термической обработки последнего, которую проводят непосредственно в приборе дифференциального термического анализа (ДТА) в атмосфере очищенного аргона и его исследование методом ДТА. Осуществляют нагрев образца сплава в однофазную β-область, переохлаждение ниже температур активного диффузионного распада β-твердого раствора, кратковременную выдержку и повторный нагрев в однофазную область. Проводят фиксацию зависимости ДТА-сигнала от температуры и расчет значений производной ДТА-сигнала, а температуру окончания полного полиморфного превращения определяют по максимуму на кривой первой производной ДТА-сигнала при повторном высокотемпературном нагреве. Технический результат: повышение точности определения температуры полного полиморфного превращения в жаропрочных двухфазных титановых сплавах. 4 ил.

Использование: для определения фазового состояния газожидкостного потока в контрольной точке вертикального сечения трубопровода. Сущность: заключается в содержании устройством для определения фазового состояния газожидкостного потока измерительного устройства и терморезистивного датчика фазового состояния, включающего расположенную вдоль оси движения потока и жестко закрепленную одной короткой стороной печатную плату с установленным на ней чувствительным элементом, выполненным в виде подложки, на которой размещен пленочный резистор (терморезистор) в «точечном» исполнении. Чувствительный элемент установлен в контрольной точке по вертикальной оси поперечного сечения трубопровода и соединен с измерительным устройством, которое содержит измерительную схему и микроконтроллер с программным управлением и предназначено для измерения изменения сопротивления терморезистора, связанного с изменением фазового состояния среды в горизонтальных слоях газожидкостного потока, и обработки сигнала. При этом чувствительный элемент датчика одной короткой стороной подложки закреплен на краю короткой незакрепленной стороны печатной платы. Пленочный резистор (терморезистор), размещенный на подложке, смещен к краю свободной короткой стороны подложки и расположен на расстоянии не более 0,5 мм от этого края. Контактные площадки, предназначенные для присоединения подложки к печатной плате, выполнены напротив терморезистора у противоположной короткой стороны подложки. Технический результат: повышение быстродействия устройства для определения фазового состояния газожидкостного потока. 5 ил.

Изобретение относится к области тепловых исследований свойств жидкостей и может быть использовано для исследования динамических процессов термостимулированной структурной перестройки жидкостей. Заявлен способ исследования теплофизических свойств жидкостей, при котором в металлической кювете с пробой жидкости, снабженной датчиком температуры, размещают металлический зонд вибровискозиметра, снабженный датчиком температуры. Зонд приводят в режим гармонических колебаний, изменяют температуру кюветы посредством управляемого устройства охлаждения-нагрева. Измеряют температуру, амплитуду, фазу, частоту колебаний зонда и определяют плотность, вязкость и температуропроводность жидкости в зависимости от ее температуры. Также измеряют зависимость от температуры оптического пропускания жидкости в непосредственной близости от зонда для моментов прохождения зондом его равновесного положения. Устройство для осуществления способа включает кювету, управляемое устройство охлаждения-нагрева, сферический металлический зонд вибровискозиметра, размещаемый внутри кюветы. Зонд и кювета снабжены датчиками температуры. Также кювета снабжена волоконно-оптическим датчиком оптического пропускания жидкости, установленным в непосредственной близости от зонда. Технический результат: повышение точности измерений. 2 н.п. ф-лы, 2 ил.

Изобретение относится к измерительной технике. Способ основан на экспериментальном определении температуры лавинообразного распада охлаждающей жидкости на горячей поверхности, в статических условиях, без потока жидкости. Технический результат - упрощение процесса отбраковки различных партий охлаждающей жидкости, уменьшение количества вещества в исследуемой пробе, что в свою очередь обеспечивает безопасность персонала, проводящего исследования. 1 ил.

Изобретение относится к области инновационных технологий и может быть использовано для повышения эффективности определения функциональных параметров полимерных композиционных материалов, определяющих эффективность перспективных технических систем. Заявлен способ определения температуры стеклования полимерных композиционных материалов на основе тетразола, согласно которому температуру стеклования определяют по изменению наклона на графике температурной зависимости обратной величины действительной части комплексной диэлектрической проницаемости 1/ε′=f(T). Технический результат - повышение точности и достоверности определения температуры стеклования полимерных композиционных материалов на основе тетразола. 4 ил., 1 табл.

Изобретение относится к пограничной области между физикой, химией и биологией и может быть использовано в научных и промышленных лабораториях для определения параметров фазового перехода в воде и влияния на них условий (давление, температура), добавок веществ и полей. Предлагается способ измерения параметров фазового перехода жидкость-жидкость в водных растворах амфифилов измерением теплового эффекта разбавления раствора амфифила растворами ПЭО в зависимости от концентрации амфифила. Технический результат - повышение достоверности идентификации и разделения двух осциллирующих состояний системы. 3 з.п. ф-лы, 1 ил.

Изобретение относится к термическому и дилатометрическому анализу и может быть использовано для определения критических точек фазовых превращений в металлических материалах при непрерывном нагреве. Согласно способу испытывают образец с использованием одинарного закалочного дилатометра и безинерционной термопары, приваренной к образцу. Нагревают исследуемый образец с постоянной скоростью с помощью индуктора. Автоматически фиксируют время от начала измерения, температуру исследуемого образца, абсолютное удлинение образца и относительную мощность индуктора. Для фазовых превращений 1 рода по результатам испытаний образца строят на одном координатном поле зависимости W=f(Tобр.), где W - относительная мощность индуктора, %, Tобр. - температура исследуемого образца, °C. По построенным зависимостям находят первую производную относительной мощности индуктора в каждой точке. Затем строят на одном координатном поле зависимости абсолютного удлинения от температуры исследуемого образца Δl=f(Tобр.) и первой производной относительной мощности индуктора от температуры исследуемого образца dW/dTобр.=f(Tобр.). Определяют начало и окончание фазовых превращений 1 рода в виде критических точек (Tн) и (Tк) по моменту отрыва функции dW/dTобр.=f(Tобр.) от пулевого уровня на фоне изменения функции Δl=f(Tобр.). Определяют температуру фазового превращения 2 рода в виде критической точки (Tкр) по положению максимума первой производной относительной мощности индуктора. Технический результат - повышение точности определения начала и конца фазовых превращений 1 и 2 рода в исследуемом металлическом материале. 5 ил.
Наверх