Способ получения катализатора метанирования

Изобретение относится к технологии приготовления катализаторов на основе никеля, стабилизированного активным оксидом алюминия, и может быть использовано в химической промышленности для тонкой очистки водородсодержащих газов от оксидов углерода методом каталитического гидрирования до метана. Способ получения включает одно-, или двух-, или трех-, или четырехкратную пропитку носителя в растворе нитрата никеля с концентрацией 200 г/л на основе активной окиси алюминия в форме шаров диаметром 2-5 мм, предварительно носитель прокаливают при температуре 700°С. После пропитки осуществляют последующую сушку при температуре 100-120°С и прокаливание при температуре 450-500°С пропитанного носителя. Затем проводят пропитку аммиачно-карбонатным раствором с концентрацией аммиака - 100-120 г/л, СО2 - 90-100 г/л, сушат при температуре 100-120°С и прокаливают при температуре 450-500°С. Готовый катализатор содержит 15-30% оксида никеля. Технический результат - катализатор обладает повышенной активностью, термостабильностью и механической прочностью. 2 з.п. ф-лы, 1 табл., 5 пр.

 

Изобретение относится к технологии приготовления катализаторов на основе никеля, стабилизированного активным оксидом алюминия, и может быть использовано в химической промышленности для тонкой очистки водородсодержащих газов от оксидов углерода методом каталитического гидрирования до метана.

В настоящее время известен способ приготовления катализатора для очистки водородсодержащих газов от окиси и двуокиси углерода путем осаждения активного компонента из раствора его соединения [Авторское свидетельство №237115 B01J 37/03, 23/74, 1969 г.].

Данная технология совместного осаждения многостадийна, а катализатор обладает недостаточной прочностью. Недостатком данного способа является наличие стадии фильтрации, промывки до полного отсутствия нитратов, что приводит к появлению стоков и недостаточной воспроизводимости результатов.

Наиболее близким по технической сущности к предлагаемому изобретению является способ приготовления никелевых катализаторов путем пропитки носителя раствором, содержащим соединения никеля в виде аммиаката никеля или аммиачно-карбонатного комплекса никеля, с последующей термической обработкой, размолом, уплотнением и таблетированием [Авторское свидетельство №272283 B01J, 23/755, 1970 г.]. К недостаткам данного способа относится необходимость формования гранул таблетированием. В процессе таблетирования в результате создаваемого давления происходит переуплотнение таблетируемого материала, и в получаемой таблетке катализатора формируется неблагоприятная пористая структура, характеризующаяся низким значением общей пористости и значительным преобладанием микропор, что приводит к снижению активности катализатора. Кроме того, катализатор, полученный данным способом, имеет повышенный насыпной вес и значительный разброс значений прочности отдельных таблеток. Недостатком катализатора, полученного данным способом, является также пониженная термостабильность.

Задачей настоящего изобретения является получение катализатора, обладающего повышенной активностью, термостабильностью и механической прочностью.

Поставленная задача решается способом получения катализатора метанирования, включающим одно-, или двух-, или трех-, или четырехкратную пропитку носителя на основе активной окиси алюминия в форме шаров диаметром 2-5 мм, прокаленного при температуре 700°С, в растворе нитрата никеля с концентрацией 200 г/л с последующей сушкой при температуре 100-120°С и прокаливанием при температуре 450-500°С пропитанного носителя. Затем проводят пропитку аммиачно-карбонатным раствором с концентрацией аммиака - 100-120 г/л, СО2 - 90-100 г/л, сушат при температуре 100-120°С и прокаливают при температуре 450-500°С. Готовый катализатор содержит 15-30% оксида никеля.

В результате применения данного способа при производстве катализатора полностью отсутствуют вредные стоки. За счет оптимальной пористой структуры, обеспечиваемой температурой прокаливания носителя, повышается активность, термостабильность и прочность катализатора, а также снижается его насыпной вес. Дополнительная пропитка аммиачно-карбонатным раствором позволяет обеспечить поддержание оксида никеля в катализаторе в высокодисперсном состоянии, что позволяет повысить активность и стабильность катализатора. Применение носителя в форме шара дает возможность существенно упорядочить укладку гранул катализатора при загрузке в каталитический реактор, по сравнению с цилиндрической формой таблетки, что позволяет уменьшить перепад давления и исключить возможность образования застойных зон.

Нижеследующие примеры иллюстрируют настоящее изобретение.

Пример 1. Активную окись алюминия в форме шаров диаметром 3-6 мм прокаливают при температуре 700°С в течение 4 часов. После охлаждения гранулы активной окиси алюминия пропитывают водным раствором нитрата никеля с концентрацией 200 г/л с последующей сушкой при 110-120°С и прокалкой при температуре 450-500°С со скоростью подъема температуры не выше 1°С в минуту. Затем после охлаждения гранулы пропитывают в аммиачно-карбонатном растворе с концентрацией аммиака - 100 г/л, СО2 - 90 г/л, сушат при температуре 100-120°С и прокаливают при температуре 450-500°С. Готовый катализатор содержит 15 мас.% NiO, остальное Al2O3.

Пример 2. Способ осуществляют по примеру 1, но проводят двукратную пропитку в растворе нитрата никеля с промежуточной сушкой и прокаливанием. После охлаждения гранулы пропитывают в аммиачно-карбонатном растворе с концентрацией аммиака - 120 г/л, СО2 - 90 г/л. Готовый катализатор содержит 24,6 мас.% NiO, остальное Al2O3.

Пример 3. Способ осуществляют по примеру 1, но проводят трехкратную пропитку в растворе нитрата никеля с промежуточной сушкой и прокаливанием. После охлаждения гранулы пропитывают в аммиачно-карбонатном растворе с концентрацией аммиака - 110 г/л, СО2 - 100 г/л. Готовый катализатор содержит 30,7 мас.% NiO, остальное Al2O3.

Пример 4. Способ осуществляют по примеру 1, но проводят четырехкратную пропитку в растворе нитрата никеля с промежуточной сушкой и прокаливанием. После охлаждения гранулы пропитывают в аммиачно-карбонатном растворе с концентрацией аммиака - 120 г/л, СО2 -95 г/л. Готовый катализатор содержит 35,0 мас.% NiO, остальное Al2O3.

Пример 5 (прототип). В Z-образный смеситель загружается предварительно размолотая окись алюминия, алюминат кальция или их композиция и основной карбонат никеля 2 кг. При перемешивании к смеси добавляется 25%-ный раствор NH4OH 2,5 л. Перемешивание производится при температуре окружающей среды в течение 1 часа. Затем включается обогрев смесителя (паровой и электрический) и продолжается замес до удаления аммиака в течение 4-6 часов при температуре 100-120°С. Полученный носитель, пропитанный карбонатом никеля, прокаливается при температуре 350-500°С в течение 4-12 часов, размалывается и смешивается с графитом в шаровой мельнице, шихта уплотняется и таблетируется.

Активность полученных образцов катализаторов определяли по скорости реакции гидрирования оксида углерода с образованием метана в азото-водородной смеси с соотношением H2/N2 - 3/1 при температурах 150-300°С, давлении 0,1 МПа, объемной доле СО в исходной смеси 0,85-0,90% на лабораторной проточно-циркуляционной установке. Расход исходной газовой смеси 10 л/ч. Скорость циркуляции газовой смеси в цикле установки составляет 1000 л/ч. При вводе и выводе газовой смеси со скоростью 10 л/ч в цикле устанавливается высокая кратность циркуляции ~ 100, что обеспечивает безградиентность условий испытания.

В таблице представлены характеристики полученных образцов, показывающие, что описанный метод позволяет получать катализаторы, обладающие пониженным насыпным весом, высокой активностью и механической прочностью. Описанный метод позволяет получать катализатор с повышенной термостабильностью, что иллюстрируется данными по размерам кристаллитов активного компонента в образцах катализаторов. Чем ниже значение размера кристаллитов, тем меньше катализатор подвержен процессу спекания, который приводит к снижению активности катализатора под действием температур.

Таблица
Катализатор
по примеру
Насыпная плотность, кг/дм3 Механическая прочность, Н/гран Активность, мольCH4/(час·кг) при температуре процесса Размер кристаллитов NiO в готовом катализаторе, нм Размер кристаллитов Ni в восстановленном катализаторе после 8 часов испытания активности, нм
300°С 200°С 170°С
1 0,80 161 12,9 3,9 0,88 5 <5
2 0,90 164 13,0 4,1 0,90 6 <5
3 0,98 158 13,0 4,4 1,00 5 <5
4 1,05 157 13,1 4,9 1,10 6 <5
5 (прототип) 1,30 153 9,4 3,5 0,75 10 16

Источники информации

1. Авторское свидетельство SU №237115 B01J 37/03, 23/74, 1969 г.

2. Авторское свидетельство SU №272283 B01J 23/755, 1970 г. (прототип).

1. Способ получения катализатора метанирования путем пропитки носителя на основе оксида алюминия раствором, содержащим соединения никеля, с последующей термической обработкой катализатора, отличающийся тем, что носитель прокаливают при температуре 700°С, пропитывают одно-, или двух-, или трех-, или четырехкратно раствором нитрата никеля концентрации 200 г/л, сушат при температуре 100-120°С, прокаливают при температуре 450-500°С со скоростью подъема температуры не выше 1°С/мин, затем проводят пропитку аммиачно-карбонатным раствором с концентрацией аммиака - 100-120 г/л, СО2 - 90-100 г/л, сушат при температуре 100-120°С и прокаливают при температуре 450-500°С.

2. Способ по п.1, отличающийся тем, что в качестве носителя используют гранулы в форме шара диаметром 2-5 мм.

3. Способ по п.1, отличающийся тем, что содержание NiO в гранулах катализатора составляет 15-35 мас.%.



 

Похожие патенты:

Изобретение относится к способу рекуперации водорода и метана из потока крекинг-газа в низкотемпературной части установки для получения этилена, заключающемуся в том, что фракцию С 2, поступающую из устройства отделения этана (деэтанизатора), подают через теплообменник (Е1) в первую секцию (А) многосекционного отделителя (D1) конденсата, конденсат отбирают из первой секции (А) многосекционного отделителя (D1) конденсата и подают в отделитель (Т1) метана, газ из многосекционного отделителя (D1) конденсата подают в следующий теплообменник (Е2) и дополнительно охлаждают в нем, дополнительно охлажденный газ подают на отделение от него жидкости во второй секции (В) многосекционного отделителя (D1) конденсата, образовавшийся при этом конденсат вновь подают в отделитель (Т1) метана, газ из второй секции (В) многосекционного отделителя (D1) конденсата подают в расширитель (X1), расширяют в нем и затем подают в отделитель (Т1) метана и фракцию С 2 из низа отделителя (Т1) метана дросселируют с понижением ее давления до давления, преобладающего в колонне для отгонки углеводородов С2, частично испаряют в теплообменнике (Е1) и подают в колонну для отгонки углеводородов С2 .

Изобретение относится к вариантам способа получения гидрата газа, один из которых характеризуется тем, что молекулы-гостя вводят в пустоты в слое, в котором условие температуры и давления дает возможность молекулам-гостя вызывать образование гидрата, в форме эмульсии, в которой жидкость из молекул-гостя диспергирована в воде для образования гидрата молекул-гостя в пустотах.

Изобретение относится к способу получения метана из метановоздушной смеси и может быть использовано для утилизации шахтного метана, выделяющегося при отработке газоносных пластов полезных ископаемых.

Изобретение относится к выделению метана из метановоздушной смеси и может быть использовано, в частности, для утилизации шахтного газа с получением при этом метана, который может быть использован как топливо для автотранспорта.

Изобретение относится к ациклическим насыщенным углеводородам, в частности к подготовке природного газа к транспорту. .

Изобретение относится к очистке природного газа от гомологов метана с получением чистого метана, используемого в качестве сырья в хлорной промышленности. .

Изобретение относится к способам очистки природного газа от гомологов метана и может быть использовано для получения исходного сырья, например, для производства синильной кислоты и хлорметанов.

Изобретение относится к способу получения жидких и газообразных продуктов из газообразных реагентов. .

Изобретение относится к области получения жидких углеводородов путем синтеза Фишера-Тропша. .

Изобретение относится к способу получения углеводородов - парафинов и олефинов (в виде газообразных, жидких, восков и твердых продуктов) в результате взаимодействия СО с Н2 ("синтез Фишера-Тропша") и катализаторов для этого процесса.

Изобретение относится к способу приготовления нанесенного катализатора синтеза Фишера-Тропша на основе кобальта, включающему активацию предшественника катализатора.

Изобретение относится к способам регенерации катализаторов. .

Изобретение относится к катализаторам синтеза Фишера-Тропша. .
Изобретение относится к катализатору Фишера-Тропша, включающему кобальт и цинк, в равной степени, как и к способу получения такого катализатора. .
Изобретение относится к катализаторам получения нефтяных дистиллятов с низким содержанием серы, способам приготовления таких катализаторов и способам получения носителей для катализаторов гидроочистки углеводородного сырья.
Наверх