Жидкостно-газовый струйный аппарат

Аппарат предназначен для совместного перекачивания жидкости и газов, необходимость в чем присутствует в различных областях техники. Жидкостно-газовый струйный аппарат содержит сопловой блок с, по меньшей мере, двумя соплами, первичную и вторичную камеры смешения, а также две приемные камеры, одна для жидкости и другая для газа, а вторичная камера смешения совмещена с диффузором. Технический результат - получение заданного насыщения жидкости газом с высокой точностью. 9 з.п. ф-лы, 1 ил.

 

1. Область техники

Аппарат предназначен для перекачивания жидкостью газа, необходимость в чем присутствует в различных областях техники.

2. Уровень техники

Известен жидкостно-газовый струйный аппарат, содержащий сопловой блок с, по меньшей мере, одним соплом, по меньшей мере, одну первичную и одну вторичную камеры смешения, причем вход вторичной камеры смешения расположен перед выходами первичных камер смешения, и приемную камеры, в которой размещены сопла соплового блока, первичные камеры смешения и вход вторичной камеры смешения (SU №158041, кл. F04F 5/46, 1963 г.).

Известный струйный аппарат имеет низкий коэффициент полезного действия из-за недостаточно совершенной организации смешения сред (потоков пассивного газа и активной жидкости).

Наиболее близким к предлагаемому устройству, принятым в качестве прототипа, является жидкостно-газовый струйный аппарат, содержащий сопловой блок с, по меньшей мере, одним соплом, одну первичную и одну вторичные камеры смешения и приемную камеру, в которой размещены сопла соплового блока, причем первичная камера смешения частично расположена вокруг сопла, а выход вторичной камеры смешения совмещен с диффузором (RU №2205994. М.кл.7: F04F 5/02, 2002 г.).

Недостатком прототипа является неконтролируемое насыщение жидкости пассивным газом, в связи с тем что после выхода потока жидкости и газа из первичной камеры смешения с эжектором происходит неконтролируемый (не расчетный) «окончательный захват пассивного газа».

3. Раскрытие изобретения

Задачей изобретения является обеспечение заданного проектного насыщения жидкости газом с помощью эжектора.

Решение поставленной задачи обеспечивается тем, что жидкостно-газовый струйный аппарат содержит сопловой блок, по меньшей мере, с двумя соплами, две камеры смешения: первичную для предварительного разбиения и перемешивания жидкости с пассивным газом и вторичную для выравнивания скоростей и повышения давления смеси, причем вторичная камера смешения совмещена с диффузором, а также две приемные камеры, одна для жидкости и другая для газа.

Приемная камера для жидкости расположена дальше от диффузора, чем приемная камера для газа.

Приемная камера для газа расположена дальше от диффузора, чем приемная камера для жидкости.

Используются профилированные кольцевые сопла для газа, расположенные вокруг профилированных сопел для жидкости.

Используются сопла для газа в виде отдельных профилированных отверстий, расположенных вокруг профилированных сопел для жидкости.

В приемных камерах используются известные элементы для снижения потерь давления.

Торец приемной камеры, обращенный к диффузору, выполнен сменным.

Сопла и для жидкости, и для газа размещены в ближайшей к диффузору приемной камеры.

Часть или все сопла для газа размещены на боковой поверхности приемной камеры для газа.

4. Краткое описание чертежей

Жидкостно-газовый струйный аппарат изображен на прилагаемой фигуре, где 1 - патрубок подвода жидкости к размещенным в жидкостном коллекторе 2 струйным аппаратам 3, имеющим сопла 4; газ поступает в приемную камеру 5 (газовый коллектор); выход струйного аппарата 3 размещен в первичной камере смешения 6, в которой происходит проектное насыщение жидкости газом, после чего жидкостно-газовая смесь поступает во вторичную камеру смешения 7, от которой жидкостный коллектор 2 и приемная камера 5 отделены стенками 8, и на выходе которой размещены последовательно диффузор 9 и выравнивающая труба 10, переходящая в расширитель 11 с выходом 12 в корпус расширителя 13, имеющего крепление 14 к струйному аппарату. Стенки 8 выполнены с условием инжектирования газа жидкостью только в первичной камере смешения.

Как следует из описания устройства, оно включает две приемные камеры смешения: первичную 6, в которой происходит предварительное смешение, и вторичную камеру смешения 7, в которой происходит окончательное перемешивание сред.

Соотношение площадей отверстий для ввода в первичную камеру смешения жидкости и газа подбираются из условия обеспечения проектного насыщения жидкости газом при заданных параметрах сред.

Приемная камера для жидкости расположена дальше от диффузора, чем приемная камера для газа.

Приемная камера для газа расположена дальше от диффузора, чем приемная камера для жидкости.

Используются профилированные кольцевые сопла для газа, расположенные вокруг профилированных сопел для жидкости.

Используются сопла для газа в виде отдельных профилированных отверстий, расположенных вокруг профилированных сопел для жидкости.

В приемных камерах используются известные элементы для снижения потерь давления.

Торец приемной камеры, обращенный к диффузору, выполнен сменным.

Сопла и для жидкости, и для газа размещены в ближайшей к диффузору приемной камеры.

Часть или все сопла для газа размещены на боковой поверхности приемной камеры для газа.

Приемная камера для жидкости расположена дальше от диффузора, чем приемная камера для газа, а приемная камера для газа расположена дальше от диффузора, чем приемная камера для жидкости.

Иcпoльзуютcя профилированные кольцевые сопла для газа, расположенные вокруг профилированных сопел для жидкости; профилированные кольцевые сопла для газа, расположенные вокруг профилированных сопел для жидкости, причем конструктивно сопла для газа могут быть в виде отдельных профилированных отверстий, расположенных вокруг профилированных сопел для жидкости.

В приемных камерах используются известные элементы для снижения потерь давления (плавные переходы и др.).

Для удобства обслуживания торец приемной камеры, обращенный к диффузору, выполняется сменным.

Сопла и для жидкости, и для газа могут быть размещены в ближайшей к диффузору приемной камере.

Часть или все сопла для газа размещаются па боковой поверхности приемной камеры для газа.

Профилированная часть сопел как для жидкости, так и для газа располагается внутри приемной камеры, ближайшей к диффузору, в выходном торце этой приемной камеры или снаружи ее, в первичной камере смешения.

5. Осуществление изобретения

Работает устройство следующим образом: струя активной жидкости, подводимой в аппарат по патрубку 1, из каждого сопла 4 струйного аппарата 3 попадает из жидкостного коллектора 2 в первичную камеру смешения 6, где происходит ее предварительное разбиение и перемешивание с пассивным газом, поступающим из приемной камеры 5. В первичной камере смешения 6 происходит, в соответствии с законом Дальтона, проектное насыщение жидкости газом, определяемое размерами струйного аппарата и параметрами подаваемых сред: жидкости и газа (Кедров В.М. Атомистика Дальтона. М.-Л. 1940 г.). Затем газожидкостная смесь поступает во вторичную камеру смешения 7, где происходит выравнивание скоростей и повышение давления смеси. Благодаря стенкам 8, ограничивающим инжектирование газа потоком жидкости только в первичной камере смешение, диффузор 9 обеспечивает в выравнивающей трубе 10 качественное перемешивание сред, выходящих в расширитель 11, имеющим выход 12 в корпус расширителя 13 с креплением 14 к струйному аппарату.

6. Технические результаты

Заявленное предложение обеспечивает заданное проектное насыщение жидкости газом с высокой точностью, определяемой закономерностями эжектирования сред.

1. Жидкостно-газовый струйный аппарат, содержащий сопловой блок с, по меньшей мере, двумя соплами, первичную и вторичную камеры смешения, а также две приемные камеры, одна для жидкости и другая для газа, а вторичная камера смешения совмещена с диффузором.

2. Аппарат по п.1, отличающийся тем, что приемная камера для жидкости расположена дальше от диффузора, чем приемная камера для газа.

3. Аппарат по п.1, отличающийся тем, что приемная камера для газа расположена дальше от диффузора, чем приемная камера для жидкости.

4. Аппарат по п.1, отличающийся тем, что используются профилированные кольцевые сопла для газа, расположенные вокруг профилированных сопел для жидкости.

5. Аппарат по п.4, отличающийся тем, что используются сопла для газа в виде отдельных профилированных отверстий, расположенных вокруг профилированных сопел для жидкости.

6. Аппарат по п.1, отличающийся тем, что в приемных камерах используются известные элементы для снижения потерь давления.

7. Аппарат по п.1, отличающийся тем, что торец приемной камеры, обращенный к диффузору, выполнен сменным.

8. Аппарат по п.1, отличающийся тем, что сопла и для жидкости, и для газа размещены в ближайшей к диффузору приемной камере.

9. Аппарат по п.1, отличающийся тем, что часть или все сопла для газа размещены на боковой поверхности приемной камеры для газа.

10. Аппарат по п.1, отличающийся тем, что профилированная часть сопел как для жидкости, так и для газа, расположена внутри приемной камеры, ближайшей к диффузору, в выходном торце этой приемной камеры или снаружи ее в первичной камере смешения.



 

Похожие патенты:

Изобретение относится к струйной технике. .

Изобретение относится к струйной технике, преимущественно к водоструйным насосам для создания разрежения. .

Изобретение относится к средствам распыливания жидкостей, растворов. .

Изобретение относится к противопожарной технике, а именно к конструкциям пеногенераторов, и может найти применение в системах подслойного тушения пожаров в резервуарах с легковоспламеняющимися жидкостями (ЛВЖ).

Изобретение относится к области теплоэнергетики, в частности к струйным пароводяным подогревателям воды, используемым в системах теплоснабжения, горячего водоснабжения и водоподготовки.

Изобретение относится к струйным насосам, в частности к техническим устройствам жидкостно-газовых эжекторов, в которых индуцируемой средой является струя жидкости, истекающая под давлением из многоствольного активного сопла.

Изобретение относится к гидро-газодинамическому оборудованию, а именно к эжекторным установкам, и может быть использовано в теплоэнергетике, нефтеперерабатывающей, химической промышленности, а также в других отраслях промышленности, где необходимо использовать смешение жидкости и газа.

Изобретение относится к противопожарной технике, а именно к конструкциям пеногенераторов, и может найти применение в системах подслойного тушения пожаров в резервуарах с легковоспламеняющимися жидкостями (ЛВЖ)

Изобретение относится к средствам распыливания жидкостей, растворов

Изобретение относится к нефтеперерабатывающей промышленности, в частности к установкам для эжекции газа в поток жидкости в нефтесборных трубопроводах и системах поддержания пластового давления. Устройство для эжекции низконапорного газа в поток жидкости, находящейся под давлением, выполнено в виде конфузорно-диффузорного перехода, имеющего профиль Вентури со щелью эжекции в области сужения, и содержит конфузор, диффузор, входной патрубок для подачи газа, расположенный в области сужения и сообщающийся со щелью эжекции с созданием зоны смешения в потоке жидкости, а щель эжекции образована внешней конусной поверхностью сопла конфузора и внутренней криволинейной поверхностью входного отверстия диффузора, причем минимальный диаметр входного отверстия диффузора составляет (1,0-1,15) от диаметра сопла конфузора. Педложенное изобретение позволяет по сравнению с известными аналогами увеличить коэффициент восстановления давления при максимальном уровне расхода газа. 2 ил.

Установка предназначена для выработки электроэнергии за счет энергии гидравлического потока реки, покрытой льдом. Подвод перекачиваемой среды, воздуха, выполнен в виде коленообразной трубы, вертикальная часть которой жестко зафиксирована во льду и сообщена с атмосферой, а горизонтальная часть с диффузором размещена подо льдом по направлению потока воды. При этом к свободному концу вертикальной части коленообразной трубы герметично присоединен воздухозаборник, в полости которого размещен вентилятор с генераторной установкой. Технический результат - создание простой гидроэнергетической установки с возможностью ее использования для выработки электроэнергии за счет энергии гидравлического потока реки, покрытой льдом. 1 з.п. ф-лы, 1 ил.

Изобретение относится к струйной технике, преимущественно к жидкостно-газовым эжекторам, используемым для компрессии газа жидкостью. Рабочая камера первой ступени эжектора выполнена кольцевой, а в ее внутренней полости расположена цилиндрическая рабочая камера второй ступени. Канал подвода активной среды ко второй ступени расположен снаружи относительно первой и второй ступеней. На выходе рабочей камеры первой ступени размещен диффузор, в выходном сечении которого расположено сопло питания второй ступени на расстоянии от плоскости среза его отверстий до плоскости входного сечения цилиндрической рабочей камеры второй ступени не менее двух диаметров ее поперечного сечения. При этом сопло питания второй ступени имеет профильный экран с поверхностью в виде тела вращения, образованного вращением полукруга вокруг оси сопла питания второй ступени, центр которого расположен на расстоянии от оси сопла питания второй ступени, а плоскость вращения совпадает с плоскостью среза отверстий сопла питания второй ступени. Изобретение позволяет повысить КПД и надежность работы жидкостно-газового эжектора с одновременным уменьшением его осевых габаритов. 5 ил.

Изобретение относится к нефтедобывающей промышленности. Устройство выполнено в виде конфузорно-диффузорного перехода, имеющего профиль Вентури со щелью эжекции в области сужения, и содержит конфузор, диффузор, входной патрубок для подачи газа, расположенный в области сужения и сообщающийся со щелью эжекции с созданием зоны смешения в потоке жидкости. Устройство содержит механизм стабилизации технологического режима впрыска газа в поток жидкости, включающее узел дренирования жидкости в области щели эжекции для снижения давления до атмосферного, выходной сепаратор газожидкостной смеси с клапаном регулирования для частичного отбора газа высокого давления, соединенный контуром рециркуляции со щелью инжекции для подвода газа в область промежуточного давления в сечении конфузора, расположенной на его образующей, причем входной патрубок оборудован задвижкой. Использование устройства для эжекции низконапорного газа позволяет повысить производительность и надежность работы эжектора при максимальном коэффициенте восстановления давления. 1 ил.

Изобретение относится к области струйной техники, преимущественно к струйным аппаратам для создания вакуума. В эжекторе, содержащем распределительную камеру с соплами, приемную камеру, камеры смешения и сбросную камеру. Каждая камера смешения установлена соосно относительно своего сопла. Сопло состоит из внешней цилиндрической обечайки, в которую вмонтирована втулка из антифрикционного композиционного материала, при этом отверстие втулки имеет переменное поперечное сечение, сужающееся по ходу движения потока, а на внутренней поверхности отверстия втулки выполнены кольцевые канавки, расположенные по винтовой траектории. Кроме того, камера смешения состоит из внешней цилиндрической обечайки, в которую вмонтирована втулка из антифрикционного композиционного материала, при этом отверстие втулки имеет постоянное поперечное сечение. Технический результат - повышение коэффициента полезного действия эжектора при одновременном снижении массоемкости аппарата и упрощение технологии изготовления. 1 з.п. ф-лы, 3 ил.

Изобретение относится к области струйной техники, преимущественно к струйным аппаратам для создания вакуума. Аппарат содержит распределительную камеру с соплами, приемную камеру, камеры смешения и сбросную камеру, причем каждая камера смешения установлена соосно относительно своего сопла. Сопло состоит из внешней цилиндрической обечайки, в которую вмонтирована втулка из антифрикционного полимерного материала, при этом втулка имеет возможность вращательного движения относительно обечайки за счет зазора между внутренней стенкой обечайки и внешней поверхности втулки, а на внутренней поверхности втулки закреплены лопасти. Технический результат - повышение коэффициента полезного действия эжектора при одновременном снижении массоемкости аппарата и упрощение технологии изготовления. 3 ил.

Эжектор предназначен для эжекции газа в поток жидкости в системах поддержания пластового давления. Эжектор содержит входной конфузор 1, диффузор 2 с расположенной между ними щелью эжекции 3, патрубок 4 для подачи газа, сообщающийся со щелью эжекции 3 на входе конфузора 2, в месте соединения его с трубопроводом подачи воды установлена регулировочная муфта 5 с конусной иглой 6, которая может перемещаться вдоль центральной оси конфузора 2. Конусная игла 6 расположена вдоль этой оси и входит в конфузорно-диффузорный переход, изменяя при перемещении площадь его проходного сечения. Регулировочная муфта 5 включает корпус 7 с закрепленными на нем снаружи четырьмя взаимно-перпендикулярными рычагами 8. Внутри корпуса 7 расположена втулка 9, на которой закреплены четыре взаимно-перпендикулярные лопасти 10, в центре пересечения которых выполнено гнездо 11 для установки конусной иглы 6. Корпус 7 имеет внутреннюю резьбу для крепления его на наружной резьбе конфузора 1. Технический результат заключается в обеспечении стабильности работы эжектора в условиях изменяющихся технологических параметров его работы. 1 з.п. ф-лы, 3 ил.
Наверх