Теплоизоляционное покрытие



Теплоизоляционное покрытие
E04B1/74 - изоляция, поглощение или отражение тепла, звука или шума (придание помещениям определенной формы или сооружение в помещениях специальных устройств для воздействия на акустические условия E04B 1/99); прочие способы, применяемые в строительстве, для обеспечения нормального теплового или акустического режима, например аккумуляции тепла в стенах (противопожарная защита E04B 1/94; строительные элементы, предназначенные преимущественно для конструктивных целей E04C 1/00-E04C 3/00; предназначенные преимущественно для покрытия поверхности E04F 13/00; в качестве внутренних слоев для половых настилов E04F 15/18; закрывающие элементы для проемов в стенах и т.п E06B)

Владельцы патента RU 2473751:

Общество с ограниченной ответственностью "Завод Инновационного Промышленного оборудования" (RU)

Изобретение относится к высокотемпературным теплоизоляционным покрытиям, используемым в сфере гражданского и промышленного строительства, машиностроения, авиастроения, космоса, железнодорожного транспорта и других отраслей промышленности. Теплоизоляционное покрытие представляет собой смесь из металлизированных и неметаллизированных керамических микросфер, в качестве связующего вещества которой используется смесь стирол-акрилового латекса (5,0-10% по массе), натриевого жидкого стекла (1,0-3,0% по массе) и низкомолекулярного силиконового каучука (4,0-6,0% по массе). Металлизация керамических микросфер выполнена из магнитомягкого металла железа толщиной 800-900 ангстрем. В процессе нанесения покрытия на микросферы воздействуют магнитные силовые линии, для создания которых на обратной стороне поверхности изделия сложной конфигурации, по отношению к стороне, на которую наносится покрытие, имеется стальной сердечник, индукционная обмотка, провода для подвода электрического тока и напряжения. Изобретение обеспечивает повышение эффективности и производительности теплоизоляционных работ. 1 ил.

 

Изобретение относится к высокотемпературным теплоизоляционным (теплозащитным) покрытиям на основе стирол-акрилового латекса и полых микросфер и может быть использовано в сфере строительства, машиностроения, авиации, космоса, железнодорожного транспорта и других отраслей промышленности.

Известно теплоизоляционное покрытие, содержащее слой, адгезионно связанный с основой покрываемого материала и состоящий из полых керамических микросфер и полимерного связующего на основе акрилового латекса, при этом содержание микросфер по массе составляет 60-80%, а содержание связующего - 20-40% (патент на ПМ №53667 от 27.12.2005 г.).

Недостатком данного покрытия является невозможность защиты от проникновения через покрытие лучей инфракрасного и радиочастотного диапазонов, а также низкие теплоизоляционные свойства из-за относительно высокой теплопроводности смеси керамических микросфер и связующего.

Этого недостатка лишено теплоизоляционное покрытие (прототип) с металлизированными микросферами и неметаллизированными микросферами и смеси микросфер, состоящей из полимерных, стеклянных и керамических микросфер. В качестве связующего используется смесь стирол-акрилового латекса (5,0-10% по массе), натриевого жидкого стекла (1,0-3,0% по массе) и низкомолекулярного силиконового каучука (4,0-6,0% по массе). В качестве покрытия может использоваться серебро. Целесообразно использовать керамические микросферы из алюмосиликатного материала диаметром от 5 до 150 микрон и толщиной серебряного покрытия около 500 ангстрем (см. патент на полезную модель RU 102021, Е04В 1/74, «Теплоизоляционное покрытие», авт. Якунин Г.Н., Прокопьев И.П., Бураков В.В).

Полые микросферы в России производятся фирмой «Уралайт» (г.Челябинск). Истинная плотность микросфер составляет 0,8-0,9 г/см3. Слой из металлизированных микросфер может быть нанесен отдельно от нанесения всего покрытия в целом, так и вместе с ним.

При нанесении жидкого покрытия металлизированные микросферы, как наиболее тяжелые частицы наполнителя, оседают и остаются в нижней части, образуя дополнительный слой, который обеспечивает защиту от электромагнитных излучений и одновременно повышает теплоизоляционные свойства за счет повышенной адсорбции инфракрасного излучения слоем металлизированных микросфер.

Существенным недостатком прототипа является перемещение более тяжелых керамических микросфер с металлическим покрытием под действием гравитации, управлять которой невозможно, а это снижает производительность процесса нанесения теплоизоляционного покрытия, особенно на поверхности сложной конфигурации, и делает практически невозможным для нанесения на вертикально расположенные и потолочные поверхности.

Технической задачей заявляемого изобретения является создание теплоизоляционного покрытия, включающего керамические полые сферы с металлическим покрытием из магнитомягкого металла железа, на которое воздействует управляемое магнитное поле, что позволяет эффективно наносить теплоизоляционное покрытие на поверхности сложной конфигурации, а также вертикальные и потолочные.

Поставленная задача решается за счет того, что теплоизоляционное покрытие, представляющее собой смесь из металлизированных и неметаллизированных керамических микросфер, при этом в качестве связующего вещества используется смесь стирол-акрилового латекса (5,0-10% по массе), натриевого жидкого стекла (1,0-3,0% по массе), низкомолекулярного силиконового каучука (4,0-6,0% по массе), отличается тем, что с целью увеличения скорости формирования слоя сфер с металлизированным покрытием и повышения качества сцепления с поверхностью сложной конфигурации и рельефа металлизация керамических микросфер выполнена из магнитомягкого металла железа толщиной 800-900 ангстрем и, в процессе нанесения покрытия на них, воздействуют магнитные силовые линии, для создания которых на обратной стороне поверхности изделия сложной конфигурации по отношению к стороне, на которую наносится покрытие, имеется стальной сердечник, индукционная обмотка, провода для подвода электрического тока и напряжения.

Сущность изобретения поясняется чертежом, на котором:

Фиг.1 - схематическое изображение теплоизоляционного покрытия.

Теплоизоляционное покрытие состоит из связующего вещества 1 на основе акрилового латекса (5,0-10% по массе), натриевого жидкого стекла (1,0-3,0% по массе) и низкомолекулярного силиконового каучука (4,0-6,0% по массе), содержащее полые неметаллизированные керамические микросферы 2, металлизированные керамические полые микросферы 3, покрытые магнитомягким металлом железом 4, толщиной 800-900 ангстрем, поверхность 5 изделия 6 сложной конфигурации. Перемещение полых керамических микросфер 3, покрытых магнитомягким металлом железом 4, происходит под воздействием магнитных силовых линий 7, создаваемых стальным сердечником 8 и индукционной обмоткой 9, с проводами 10 для подвода напряжения U и электрического тока I. В результате образуется слой 11 металлизированных керамических полых микросфер 3, покрытых магнитомягким материалом железом 4, создаваемый под действием магнитных силовых линий 7, и слой 12 из неметаллизированных полых керамических микросфер 2. Со стороны поверхности 5 изделия 6 сложной конфигурации идет тепловое излучение 13.

Предложенное изобретение работает следующим образом.

Теплоизолирующее покрытие, состоящее из связующего вещества 1 на основе стирол-акрилового латекса и содержащее металлизированные керамические полые микросферы 3, покрытые магнитомягким металлом железом 4, и неметаллазированные керамические полые микросферы 2, наносится на поверхность 5 изделия 6 сложной конфигурации, при этом одновременно на теплоизолирующее покрытие воздействуют магнитные силовые линии 7. Взаимодействуя с магнитомягким железом 4, они создают защитный слой 11, достаточно плотно структурированный, чтобы обеспечить высокую степень защиты от теплового и электромагнитного излучения 13. Магнитные силовые линии 7 действуют на металлизированные керамические полые микросферы 3, покрытые магнитомягким металлом железом 4, сильнее, чем гравитационное поле, как указано в прототипе (см. патент на полезную модель RU 102021, Е04В 1/74, «Теплоизоляционное покрытие», авт. Якунин Г.Н., Прокопьев И.П., Бураков В.В). В то же время мощность, а значит, и плотность магнитных силовых линий 7 определяется сердечником 8 и индукционной катушкой 9, в зависимости от величины напряжения U и силы тока . При этом действие магнитных силовых линий не зависит от положения в пространстве (горизонтальное, вертикальное), тогда как гравитационные силы имеют только один вектор, направленный к центру земли. В результате наружный слой 12 формируется из неметаллизированных керамических полых микросфер 2, стоимость которых ниже полых керамических микросфер 2, покрытых магнитомягким металлом железом 4.

Предложенное изобретение позволяет наносить теплостойкое покрытие со значительно большей производительностью, т.к. нет необходимости наносить два или три слоя, как это делается в прототипе (см. патент на полезную модель RU 102021, Е04В 1/74, «Теплоизоляционное покрытие», авт. Якунин Г.Н., Прокопьев И.П., Бураков В.В), и существенно повысит качество, поскольку магнитные силовые линии обеспечивают надежную плотность металлизированных керамических полых микросфер покрытия у поверхности изделия, независимо от рельефа и конфигурации и положения в пространстве.

Теплоизоляционное покрытие, представляющее собой смесь из металлизированных и неметаллизированных керамических микросфер, при этом в качестве связующего вещества используется смесь стирол-акрилового латекса (5,0-10% по массе), натриевого жидкого стекла (1,0-3,0% по массе), низкомолекулярного силиконового каучука (4,0-6,0% по массе), отличающееся тем, что, с целью увеличения скорости формирования защитного слоя теплоизоляционного покрытия из металлизированных керамических полых микросфер и повышения качества сцепления с поверхностью сложной конфигурации и рельефа, металлизация керамических микросфер выполнена из магнитомягкого металла железа толщиной 800-900 ангстрем и в процессе нанесения покрытия на них воздействуют магнитные силовые линии, для создания которых на обратной стороне поверхности изделия сложной конфигурации по отношению к стороне, на которую наносится покрытие, имеется стальной сердечник, индукционная обмотка, провода для подвода электрического тока и напряжения.



 

Похожие патенты:

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению. .

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению. .

Изобретение относится к наземному строительству, а именно к способам проведения внеплановых и плановых поверок оборудования и аппаратуры испытательных акустических помещений.

Изобретение относится к области строительства, в частности к технологии и средствам соединения преимущественно теплоизоляционных панелей. .

Изобретение относится к слоистым изделиям, применяемым в строительстве для теплозвукоизоляции зданий и помещений в нем. .

Изобретение относится к системе регулирования окружающей среды внутри помещения. .

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению. .

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению, и может быть использовано во всех отраслях народного хозяйства при шумоглушении производственного оборудования методом звукопоглощения.

Изобретение относится к промышленной акустике, в частности к широкополосному шумоглушению. .
Изобретение относится к изготовлению лакокрасочных материалов на основе полимерных пленкообразующих связующих и может быть использовано для получения искусственных пленочных электропроводящих покрытий (резистов), предназначенных для изготовления радиопоглощающих заполнителей.
Изобретение относится к водной композиции покрытия для формирования отслаивающегося временного покрытия на подложке. .
Изобретение относится к водно-дисперсионным лакокрасочным материалам, предназначенным для защиты от коррозии металлических поверхностей, эксплуатируемых в атмосферных условиях.

Изобретение относится к лакокрасочным материалам, предназначенным для покрытия металлических и эмалированных поверхностей и для окраски неметаллических материалов.
Изобретение относится к покрывающей композиции, имеющей низкое содержание летучих органических соединений. .

Изобретение относится к водно-дисперсионным лакокрасочным материалам, предназначенным для защиты от коррозии металлических поверхностей, и касается защитного наноингибированного лака.
Изобретение относится к области химии и касается композиции для изготовления водно-растворимых дисперсий и способа ее получения. .
Изобретение относится к композициям, предназначенным для поверхностной обработки материалов с целью придания им гидрофобных свойств. .

Изобретение относится к композициям для покрытия поверхности помещений. .
Изобретение относится к электроосаждаемой композиции для покрытия, которая может быть нанесена на электропроводящую подложку посредством способа анодного электроосаждения, подложкам, покрытым такой композицией для покрытия, и способу нанесения покрытия на подложку
Наверх