Способ получения порошка оксида висмута (iii)

Изобретение может быть использовано в химической технологии. Способ получения порошка оксида висмута(III) включает окисление висмута кислородом во вращающемся реакторе с контролируемой атмосферой. При этом окислению подвергают смесь металлического висмута и порошка оксида висмута. Порошок оксида висмута берут в количестве 0,5-5,0 мас.%. Окисление смеси на начальной стадии ведут при 300-350°С с последующим повышением температуры до 500°С. Изобретение позволяет упростить способ получения порошка оксида висмута(III) при сохранении высокого выхода и качества продукта. 1 пр.

 

Изобретение относится к области синтеза неорганических соединений, а именно к способу синтеза соединений висмута и, в частности, к способу синтеза оксида висмута.

Известны способы синтеза порошка оксида висмута при окислении кислородом металлического висмута, в частности при термической обработке на воздухе предварительно приготовленного металлооксидного порошка. Данный порошок получают введением при 350°C и перемешивании в расплав висмута 20-30 мас.% порошка оксида висмута (Юхин Ю.М., Михайлов Ю.И. Химия висмутовых соединений и материалов. Новосибирск: Изд-во СО РАН, 2001, С.43).

В описанном способе оксид висмута предлагается использовать с целью превращения всей реакционной смеси в металлооксидный порошок при добавлении достаточно большой массы - 30 мас.% - порошка оксида висмута, кроме того окисление проводится кислородом воздуха, при неконтролируемой подаче кислорода. При таких условиях, за счет неконтролируемого поступления кислорода, неизбежно будет происходить локальный перегрев реакционной смеси и образование крупных кристаллитов и комков спеков. Разрушение крупных комков спеков лопастями мешалки требует значительных механических усилий, что неизбежно вызывает износ материала, как мешалок, так и реактора. Основными недостатками данного способа, как отмечается авторами, является то, что получаемый оксид может быть загрязнен как материалом реактора, так и тонкодисперсным металлическим висмутом, кроме того, порошок содержит частицы размером до 3 мм. Достаточно большие размеры частиц порошка исключают использование его для ряда применений, например в предростовых синтезах при производстве монокристаллов, где требуются более мелкодисперсные порошки. К недостатку относится и необходимость проведения предварительной операции приготовления металлооксидного порошка при добавлении в ограниченный реакционный объем 20-30% оборотного оксида, что, соответственно, на 20-30% снижает производительность используемого оборудования.

Наиболее близким, принятым за прототип, является способ синтеза порошка оксида висмута, при окислении висмута кислородом во вращающемся реакторе с контролируемой атмосферой после предварительного удаления в восстановительной атмосфере оксидной пленки с поверхности расплава висмута (Способ получения порошка оксида висмута(III). Патент Р.Ф. №2385294). Данный способ позволяет получать высокочистый порошок оксида висмута, с размером зерна не более 500 мкм, с пониженным уровнем аппаратурного загрязнения, не содержащим тонкодисперсный металлический висмут.

Существенным недостатком данного способа является необходимость предварительного удаления в восстановительной атмосфере оксидной пленки с поверхности расплава висмута, что увеличивает время проведения процесса и требует использования дополнительных реагентов.

Задачей изобретения является разработка способа синтеза порошка оксида висмута(III), позволяющего упростить способ, путем исключения предварительного удаления оксидной пленки с поверхности расплава висмута в восстановительной атмосфере, и использование дополнительных реагентов, при сохранении высокого выхода и качества продукта.

Техническим результатом изобретения является упрощение способа при сохранении высокого выхода и качества продукта.

Технический результат достигается тем, что в способе получения порошка оксида висмута(III) путем окисления висмута кислородом во вращающемся реакторе окислению подвергают смесь металлического висмута и порошка оксида висмута, при этом порошок оксида висмута берут в количестве 0,5-5,0 мас.%, окисление смеси на начальной стадии ведут при 300-350°С с последующим повышением температуры до 500°С.

Отличительными признаками способа являются: использование смеси металлического висмута и порошка оксида висмута, количество оксида висмута, параметры процесса.

В исходном реагенте - товарном висмуте - содержатся оксидные соединения, образующиеся при взаимодействии воздушной атмосферы с поверхностью металла и способствующие образованию металлооксидных спеков. Предварительная обработка расплава висмута в восстановительной атмосфере значительно сокращает количество спеков и повышает выход целевого продукта - высокочистого порошка оксида висмута(III) с размером зерна не более 500 мкм. Однако такая обработка требует дополнительного времени и использования дополнительных реагентов. При загрузке в реактор металлического висмута в смеси с добавкой порошка оксида висмута с последующим проведением процесса окисления сохраняется высокий выход и качество целевого продукта. При этом исключается предварительная стадия - обработка расплава висмута в восстановительной атмосфере. При проведении процесса окисления во вращающемся реакторе, с контролируемым поступлением кислорода металлооксидный порошок находится на обновляемой поверхности расплава, при этом, из-за характерных физико-химических свойств зерна порошка, при механическом воздействии, возникающем при вращении реактора, могут достигать только определенных размеров, далее они разрушаются, образуя более мелкие зерна, поверхность которых смачивается расплавом металла, зерна достигают определенных размеров, разрушаются, и так процесс повторяется до полного исчезновения расплава металла. Контролируемое поступление кислорода исключает локальный перегрев реакционной смеси и образование спеков.

Добавление порошка оксида висмута (от 0,5 до 5 мас.%) в реакционную смесь в данном случае используется не для превращения всей реакционной смеси в металлооксидный порошок, а для превращения в металлооксидный порошок только поверхностной пленки оксидных соединений, образовавшихся при взаимодействии воздушной атмосферы с поверхностью исходных металлических слитков. Такая поверхностная пленка оксидных соединений висмута образуется в условиях, отличных от условий проведения процесса, и поэтому обладает другими физико-химическими свойствами. При ее сохранении в начале процесса увеличивается количество спеков и значительно снижается выход целевого продукта. Оптимальное количество добавляемого порошка оксида висмута зависит от условий получения и чистоты исходного висмута и для каждой марки металла определяется экспериментально. При добавлении меньше 0,5 мас.%, в металл марок Bi 0, Bi 00, Bi 000 наблюдается увеличение количества спеков.

Окисление смеси с целью сохранения высокого выхода целевого продукта на начальной стадии ведут при 300-350°С. В дальнейшем температура может быть повышена. При температуре выше 500°С порошок оксидных соединений висмута начинает слипаться, образуя конгломераты весом до нескольких килограмм. Удары о стенку таких массивных конгломератов, происходящие из-за вращения реактора, могут вызвать разрушение стенок стеклянного реактора. Кроме того, транспорт выделяющейся теплоты реакции окисления висмута в таких конгломератах затруднен. Это вызывает локальный перегрев реакционной смеси, приводящий к плавлению оксида висмута и образованию прочных спеков, что существенно снижает выход целевого продукта. Проведение процесса при температуре, не превышающей 500°С, позволяет сохранить высокий выход целевого продукта.

Типичный пример: Синтез порошка оксидных соединений висмута проводится во вращающемся реакторе с контролируемой атмосферой. В трубчатый кварцевый реактор с рабочим объемом ~15 л. загружают 20 кг висмута и 0,5 кг порошка оксида висмута(III), включают нагрев и, после полного плавления металла, вращение реактора. На начальной стадии синтез порошка оксида ведут при 300-350°С и скорости подачи кислорода 30 л/ч, через 48 часов температуру повышают до 500°С и продолжают процесс до полного окисления висмута. О полном окислении висмута свидетельствует отсутствие темных включений в порошке оксида висмута(III). Остывший порошок просевают через сито с ячеей 500 мкм. Выход порошка оксида висмута(III) с размером зерна не более 500 мкм составляет 90-95%. Основная масса порошка (80-90%) имеет размер зерна, не более 150 мкм.

Для установления степени загрязнения полученного предложенным способом порошка оксида висмута определялось содержание кремния. Кремний - единственно возможная примесь, поступающая из материала используемой аппаратуры - реактора из высокочистого кварцевого стекла. Содержание кремния определялось с помощью лазерной масс-спектрометрии.

Для уточнения соответствия стехиометричности полученного оксида проводился гравиметрический анализ на содержание висмута в целевом продукте. Методика анализа основана на реакции восстановления оксида висмута водородом.

По данным анализов содержание висмута в полученном порошке оксида висмута соответствует стехиометрическому (89,68%), а содержание кремния не более 1·10-3 мас.%. Погрешность используемой гравиметрической методики определения висмута в высокочистом оксиде висмута составляет 0,02 мас.%. Погрешность используемой лазерной масс-спектрометрической методики не превышает 0,25·10-3 (мас.%).

Способ получения порошка оксида висмута(III) путем окисления висмута кислородом во вращающемся реакторе с контролируемой атмосферой, отличающийся тем, что окислению подвергают смесь металлического висмута и порошка оксида висмута, при этом порошок оксида висмута берут в количестве 0,5-5,0 мас.%, окисление смеси на начальной стадии ведут при 300-350°С с последующим повышением температуры до 500°С.



 

Похожие патенты:

Изобретение относится к способу получения висмута цитрата. .
Изобретение относится к области неорганических соединений, а именно к способам получения порошков оксидных соединений и, в частности, к способу получения порошка смеси особо чистых оксидных соединений висмута и германия с повышенной насыпной плотностью.
Изобретение относится к области синтеза неорганических соединений, а именно к способу синтеза соединений висмута и, в частности, к способу синтеза оксида висмута. .

Изобретение относится к гидрометаллургии редких металлов, а конкретно - к способу переработки висмутсодержащих материалов с получением соединений висмута. .
Изобретение относится к гидрометаллургии редких металлов, а конкретно к способу переработки висмутсодержащих материалов с получением соединений висмута. .
Изобретение относится к экспериментальной медицине и может быть использовано в лабораторной диагностике. .

Изобретение относится к гидрометаллургии редких металлов, а конкретно - к способам переработки висмутсодержащих материалов с получением соединений висмута. .
Изобретение относится к гидрометаллургии редких металлов, а конкретно - к способам переработки висмутсодержащих материалов с получением соединений висмута. .

Изобретение относится к способам получения солей висмута. .

Изобретение относится к способам переработки висмутсодержащих материалов с получением висмута в виде твердых соединений или растворов. .
Изобретение относится к области синтеза неорганических соединений, а именно к способу синтеза соединений висмута, и, в частности, к способу синтеза оксида висмута
Изобретение относится к области синтеза неорганических соединений, а именно к способу синтеза соединений висмута и, в частности, к способу синтеза оксида висмута

Изобретение относится к металлорганическим латентным каталитическим соединениям, которые являются подходящими в качестве катализаторов в реакциях полиприсоединения или поликонденсации, которые катализируются катализатором типа кислоты Льюиса, в частности, для сшивки блокированного или не блокированного изоцианата или изотиоцианатного компонента с полиолом или политиолом с формированием полиуретана (ПУ)

Изобретение относится к способу получения висмут калий цитрата. Получение висмут калий цитрата проводят путем обработки висмут цитрата водным раствором калия гидроокиси. Способ осуществляют при молярном отношении калия гидроокиси к висмут цитрату, равном 1,0-1,05, и при весовом отношении раствора калия гидроокиси к висмут цитрату, равном 0,5-2,0. При этом продукт получают в виде пасты. Техническим результатом является упрощение процесса и сокращение расхода используемых реагентов. 1 табл., 3 пр.

Изобретение может быть использовано в области нанотехнологий и химической промышленности. Способ получения наночастиц висмута включает концентрирование методами экстракции прекурсоров полупроводников из водных растворов с последующим их восстановлением. В качестве экстрагентов используют s-алкилизотиуроний галогениды. Раствор s-алкилизотиуроний галогенида перемешивают с целью экстракции прекурсора висмута с раствором выщелачивания огарков окислительного обжига висмутсодержащих промышленных продуктов, содержащим 0,001 Μ водного раствора [BiCl4]-. Полученный раствор прекурсора иона висмута с ионом ПАВ в толуоле отделяют на делительной воронке, отгоняют толуол под вакуумом. Полученный раствор прекурсора разлагают при его соотношении к гидроксиду натрия 1:2 и рН=11. Полученный осадок отделяют центрифугированием и сушат на воздухе, затем осадок помещают в автоклав или ампулу, подсоединяют к вакууму, нагревают до температуры 140-180°C. Продукты термолиза охлаждают и растворяют в хлороформе. Полученную дисперсию частиц висмута центрифугируют для отделения порошка висмута от раствора хлороформа. Изобретение позволяет получить наночастицы висмута. 1 з.п. ф-лы, 1 пр.

Изобретение относится к способу получения висмут аммоний цитрата. Получение висмут аммоний цитрата проводят путем обработки цитрата висмута водным раствором гидроокиси аммония. Способ осуществляют при молярном отношении гидроокиси аммония к цитрату висмута, равном 1,0-1,5, и при весовом отношении раствора гидроокиси аммония к цитрату висмута, равном 0,96-2,5. При этом продукт получают в виде пасты, которую сушат при температуре 60-120°С. Техническим результатом является упрощение процесса и сокращение расхода используемых реагентов. 1 табл., 2 пр.

Изобретение относится к способу получения фотокатализатора на основе висмутата щелочноземельного металла и к способу фотокаталитической очистки воды от органических загрязнителей. Способ получения фотокатализатора включает растворение нитрата висмута и нитрата щелочноземельного металла в растворителе, в качестве которого выбирают водный раствор многоатомного спирта, содержащий не менее пяти атомов углерода, с последующим отжигом прекурсора при 550-650°С до образования наночастиц аморфного висмутата щелочноземельного металла нестехиометрического состава со степенью окислении, не равной двум. Причем перед отжигом прекурсора его выпаривают до образования органической матрицы с равномерно распределенными атомами висмута и щелочноземельного металла. Затем формируют кристаллическую решетку фотокатализатора при 650-750°С. При осуществлении очистки воды от органических загрязнителей фотокатализатором, отношение массы очищаемой воды к массе фотокатализатора выбирают из интервала 1000/1-1600/1, а облучение видимым светом воды с органическими загрязнителями осуществляют в течение 3-4 часов. Способ по изобретению позволяет получить частицы висмутата щелочноземельного металла негомогенного состава, в форме гетероструктуры из оксида висмута, покрытого висмутатом щелочноземельного металла стехиометрического состава со степенью окисления кальция, равной двум, без дефектов в кристаллической решетке с малой удельной площадью поверхности без пор, а также обеспечивает снижение расхода фотокатализатора при очистке воды за счет уменьшения средних размеров частиц фотокатализатора и расширения его функциональных возможностей при использовании. 2 н. и 2 з.п. ф-лы, 2 табл., 59 пр.

Изобретение относится к способу получения фотокатализатора на основе висмутата щелочноземельного металла, который заключается в растворении смеси порошков нитрата висмута Bi(NO3)3 и неорганической соли щелочноземельного металла Me с последующим выстаиванием продуктов их гидролиза до образования частиц с равномерно распределенными в их объеме ионами висмута и неравномерно распределенными ионами щелочноземельного металла и удалением из продуктов гидролиза избыточной влаги, в нагреве полученных частиц до образования частиц в виде гетероструктуры из аморфного по структуре и стехиометричного по составу висмутата щелочноземельного металла и аморфного по структуре и стехиометричного по составу оксида висмута Bi2O3 с последующей их кристаллизацией. При этом в качестве неорганической соли щелочноземельного металла Me берут оксалат щелочноземельного металла MeC2O4, предварительно перед растворением оксалат щелочноземельного металла MeC2O4 очищают от адсорбированных соединений и смешивают с нитратом висмута Bi(NO3)3, выстаивание продуктов их гидролиза ведут до образования частиц оксалата щелочноземельного металла MeC2O4, пропитанных ионами Bi(OH)2+, с равномерно распределенными ионами висмута и неравномерно распределенными ионами щелочноземельного металла, удаление избыточной влаги из продуктов гидролиза ведут до образования частиц-прекурсоров в виде гетероструктуры с центральной частью из оксалата щелочноземельного металла MeC2O4, пропитанного ионами Bi(OH)2+, и внешней оболочкой из гидроксонитрата висмута Bi(OH)(NO3)2, нагрев частиц-прекурсоров осуществляют двухстадийно до образованиия карбоната щелочноземельного металла МеСО3, пропитанного ионами Bi(OH)2+, в центральной части каждой частицы на первой стадии и до образования аморфных частиц в виде гетероструктуры с центральной областью из аморфного по структуре и стехиометричного по составу висмутата щелочноземельного металла и поверхностного слоя из аморфного по структуре и стехиометричного по составу оксида висмута Bi2O3 на второй стадии, кристаллизацию ведут до образования частицы фотокатализатора в виде гетероструктуры с центральной областью из кристалличного по структуре и стехиометричного по составу висмутата щелочноземельного металла и поверхностного слоя из кристалличного по структуре и стехиометричного по составу оксида висмута Bi2O3, при этом для смешивания компоненты берут в следующем соотношении, мас. %: оксалата щелочноземельного металла MeC2O4 4,49-3,63, нитрата висмута Bi(NO3)3 95,51-96,37, растворение ведут в дистиллированной воде при следующем соотношении компонентов, масс. %: смесь порошков оксалата щелочноземельного металла MeC2O4 и нитрата висмута Bi(NO3)3 5,00-15,00, дистиллированной воды 95,00-85,00, нагрев частиц-прекурсоров на первой стадии осуществляют до 520°С со скоростью нагрева 0,5-1,0°С/мин, на второй - до 810°С со скоростью нагрева 1,0-2,0°С/мин, кристаллизацию ведут при температуре 750-825°С. Технический результат заключается в увеличении срока сохранения каталитических свойств фотокатализатора. 1 табл., 20 пр.

Изобретение относится к области химии и может быть использовано для катализаторов при получении необходимых в промышленности газов и для синтеза высокопрочной керамики. Способ получения германата висмута Bi2GeO5 включает предварительное механическое смешивание исходных порошков оксида висмута Bi2О3 и оксида германия GeO2, нагрев полученной смеси в платиновом тигле до температуры 1050-1160°С, выдержку в расплавленном состоянии в тигле не менее 15 мин с последующим охлаждением также в тигле. Техническим результатом является получение германата висмута с высоким количеством внутренних напряжений, позволяющим легко извлекать его из платинового тигля простым постукиванием и встряхиванием, что позволяет продлить срок службы дорогостоящего тигля, так как извлечение из него синтезируемого материала происходит без разрушения и сильной деформации. 4 ил., 1 пр.
Наверх