Способ определения негерметичности агрегатов, имеющих подвижные элементы

Изобретение относится к области испытательной техники и может быть использовано для определения значения негерметичности агрегатов при воздействии вибрации, в том числе при резонансах его подвижных элементов, и направлено на повышение точности определения значения негерметичности агрегатов, что обеспечивается за счет того, что определяют негерметичность с использованием показаний датчика перепада давления, при этом согласно изобретению момент начала работы датчика перепада давления и момент начала работы программы вибростенда по вибровоздействию на агрегат синхронизируют по времени, выбирают показания перепада давления в условиях изменения перегрузок от начала и до конца повышения давления и судят о негерметичности агрегата по величине расхода газа, используя для определения расхода газа среднее значение его в диапазоне виброперегрузок за выбранный промежуток времени. 2 ил.

 

Предлагаемое изобретение относится к области испытательной техники, а именно к способам определения значения негерметичности агрегатов при воздействии вибрации, в том числе при резонансах его подвижных элементов.

Известны технические решения, где испытания цельных или с неподвижными соединениями изделий на герметичность осуществляется путем соединения ресивера, объем которого выбирают из условия обеспечения выделения пузырьков при допустимой утечке из изделия известного объема с заданной погрешностью, с трубкой барбатера, подключения к изделию упругой емкости, расположенной в газовой камере, соединения камеры с воздушной полостью барбатера, одновременного заполнения под контрольным давлением жидкостью изделия и упругой емкости, а газом ресивера, барбатера и камеру, регистрации выделяющихся из трубки барбатера пузырьков газа, по которым судят о негерметичности изделия, после заполнения жидкостью изделия ему сообщают выбрацию до окончания регистрации выделяющихся из трубки барбатера пузырьков газа (см. патент RU №2308691, кл. G01M 3/16, 2007 г.).

Однако этот способ контроля герметичности изделий не эффективен по следующим причинам.

В указанном изобретении изделие подвергается вибрации, т.е. неправомерно ухудшается его техническое состояние, т.к. реально при эксплуатации оно может не подвергаться такому воздействию.

Этот способ малоэффективен при испытании изделий с подвижными элементами и имеющими внутри себя газовые рабочие тела, так как для их испытаний необходимо иметь очень большие объемы ресивера.

И наконец, этот способ не применим для изделий с подвижными элементами, например, предохранительных клапанов баков ракет, которые реально работают в условиях вибрации, в результате чего могут возникнуть большие значения негерметичности, особенно в случае резонанса, когда частота вынужденных частот вибраций совпадает с собственной частотой подвижных элементов испытываемых изделий и когда небходимо знать конкретно в определенный период времени эту негерметичность в зависимости от значений виброперегрузок.

Наиболее близким из известных технических решений является выбранный в качестве прототипа способ определения негерметичности агрегатов, заключающийся в определении негерметичности агрегата по изменению перепада давления с помощью датчика (см. патент РФ №2253852, кл. G01M 3/00, 1992 г.).

При реализации этого способа создают разность между давлением внутри объекта, например емкости, и давлением вокруг нее и по изменению одного из давлений судят о том, удовлетворяет ли емкость заданным условиям контроля или нет, при этом сначала запоминают контрольное значение давления, когда совпадают случайные обусловленные разностью давлений деформации на емкость, и после этого производят сравнение давления с контрольным значением.

Недостатком указанного способа является то, что он не предназначен для определения значения негерметичности агрегата при динамических режимах его работы и особенно при резонансных явлениях в зависимости от воздействующих факторов, так как в не увязывает момент начала действия воздействующего фактора, в частности виброперегрузки, и функционирования системы регистрации изменения давления в дренажной емкости, например, датчиком перепада давления совместно со вторичной аппаратурой.

Техническим результатом, на который направлено данное решение, является повышение точности определения значения негерметичности агрегатов при вибровоздействии, в том числе при резонансах его подвижных элементов.

Указанный технический результат достигается тем, что в предлагаемом способе определения негерметичности агрегатов, имеющих подвижные элементы, работающих в условиях вибровоздействия, заключающемся в определении негерметичности агрегатов по изменению перепада давления с помощью датчика, датчик перепада давления соединяют с системой дренажа агрегата, при этом момент начала работы программы вибростенда по вибровоздействию и работы датчика синхронизируют по времени, выбирают показания перепада давления от начала повышения давления и его конца и судят о негерметичности агрегата по величине расхода газа, используя известные зависимости и соответствующий диапазон частот виброперегрузок.

Предложенный способ для повышения точности определения величины газа, выделяющегося из-за негерметичности подвижных элементов агрегата при вибрации, особенно в области резонансных явлений, поясняется иллюстрациями, где на фиг.1 показана принципиальная схема установки, с помощью которой реализуется указанный способ, а на фиг.2 представлен график изменения перепада давления и перегрузки в зависимости от времени и частоты вибрации.

Работа установки (см. фиг.1) при определении негерметичности агрегата осуществляется следующим образом.

Объект испытаний 1 устанавливается на оснастку 2, которая крепится на вибростенде 3.

Объект испытаний 1 связан с источником газа 4, обеспечивающим газом внутреннюю полость объекта испытании 1, и связан газовой магистралью с емкостью 5, куда в случае негерметичности объекта происходит истечение газа.

Датчик перепада давления 6 соединен газовой трубкой с емкостью 5, куда истекает газ, и измеряет величину этого истечения. Информация от датчика перепада давления, а так же параметры изменения виброперегрузки преобразуются вторичной системой измерения 7. Система управления 8 обеспечивает программу заданного изменения виброперегрузок по времени, воздействующей на объект испытания. Синхронизация включения момента измерения перепада давления датчиком и моментом включения программы реализации закона изменения частоты и перегрузки осуществляется системой синхронизации по времени 9. Контроль и измерение заданных по программе значений виброперегрузок осуществляется датчиком 10, установленным вблизи крепления объекта испытаний на оснастке.

В отличие от прототипа предлагаемый способ имеет дело с довольно значительными величинами негерметичности в связи с тем, что, во-первых, в системе существуют подвижные элементы, и, во-вторых, при воздействии вибрации негерметичность может увеличиваться, а в случае резонанса становится значительной. Поэтому, чтобы зафиксировать начало роста негерметичности агрегата, например, тарели предохранительного клапана, время его действия, конец роста в зависимости от воздействующего фактора, в частности виброперегрузки, в заявочных материалах предложено момент начало работы программы вибростенда и работы датчика синхронизировать (см. фиг.2), где А - момент начала реализации программы закона. Таким образом, количество газа, выделяющегося из-за негерметичности подвижных частей агрегата за отмеченный промежуток времени, определяется исходя из зависимости (см. М.: Машиностроение, 1985 г. Вакуумная техника. Справочник. Авторы: Е.С.Фролов и др., стр.21)

,

отсюда

,

где ΔP1 - перепад давления - определяется из графика (фиг.2),

V0 - объем емкости, куда исткает газ (объем известен),

R - газовая постоянная используемого газа при испытании (известна),

Т - температура газа (известна)

Зная указанные выше значения параметров, определяем расход (негерметичность в единицу времени).

Средний расход газа за фиксируемый промежуток времени определяем следующим образом

,

Δτ - промежуток времени, соответствующий росту перепада давления ΔР1.

Gгаза - количество газа, выделяемое из-за негерметичности за отмеченный промежуток времени.

Одновременно определяется диапазон частот и перегрузок , в области которых определена негерметичность. В соответствии с полученными результатами делается вывод о влиянии частоты и виброперегрузок на герметичность агрегата при заданном давлении внутри него.

Принципиальная схема установки, на которой осуществляется реализация указанного способа, представлена на фиг.1, где

1. Агрегат-объект испытаний

2. Оснастка

3. Вибростенд

4. Источник давления газа

5. Емкость, куда идет истечение газа из-за негерметичности

6. Датчик перепада давления

7. Вторичная система измерения давления

8. Система управления и задания параметров стенда

9. Система синхронизации по времени

10. Вибродатчик

Таким образом, благодаря данному способу повышается точность определения значения негерметичности агрегатов при вибровоздействии, в том числе при резонансах его подвижных элементов.

Способ определения негерметичности агрегатов, имеющих подвижные элементы, работающие в условиях вибровоздействия, заключающийся в определении негерметичности агрегата с использованием показаний датчика перепада давления, отличающийся тем, что момент начала работы датчика перепада давления и момент начала работы программы вибростенда по вибровоздействию на агрегат синхронизируют по времени, выбирают показания перепада давления в условиях изменения перегрузок от начала и до конца повышения давления и судят о негерметичности агрегата по величине расхода газа, используя для определения расхода газа среднее значение его в диапазоне виброперегрузок за выбранный промежуток времени.



 

Похожие патенты:

Изобретение относится к области контрольно-измерительной техники и может быть использовано, например, для контроля течей теплообменников натрий-вода атомных электростанций с реакторами на быстрых нейтронах.

Изобретение относится к области контроля за эксплуатацией технологического или иного оборудования, установленных в помещениях с притоком воздуха, например на АЭС, и направлено на повышение надежности и информативности измерений, что обеспечивается за счет того, что устройство для детектирования течей пароводяной смеси из трубопровода, установленного в помещении, снабженного притоком воздуха, включает датчик, регистрирующий значение относительной влажности в контролируемом помещении, соединенный с устройством обработки информации, при этом устройство дополнительно содержит лазерный датчик аэрозолей субмикронного размера, регистрирующий счетную концентрацию и размеры частиц аэрозолей, снабженный пробоотборной трубкой, входной конец которой установлен в точке выхода воздуха из контролируемого помещения, выход лазерного датчика аэрозолей соединен со входом устройства обработки информации, причем устройство обработки информации дополнительно содержит блок сравнения величины текущего сигнала лазерного датчика аэрозолей с базой данных и блок вычисления корреляций между значениями относительной влажности, счетной концентрации и размерами частиц аэрозолей в воздухе контролируемого помещения, также соединенный с блоком сигнализации.

Изобретение относится к трубопроводному транспорту и может быть использовано для испытаний герметичности шаровых кранов запорно-регулирующей арматуры магистральных газопроводов в трассовых условиях.

Изобретение относится к трубопроводному транспорту и может быть использовано при испытании затворов запорных арматур нефтепроводов на герметичность. .

Изобретение относится к области испытательной техники и предназначено для испытаний изделий космической техники на герметичность, кроме того, может найти применение в таких областях техники, как газовое и атомное машиностроение, авиационная промышленность.

Изобретение относится к области испытательной техники и направлено на уменьшение времени и трудоемкости испытаний трубопроводного участка, что позволит сократить затраты на его строительство, реконструкцию и ремонт.

Изобретение относится к области неразрушающего контроля неповоротных цилиндрических деталей, в частности трубопроводов, и направлено на упрощение конструкции устройства, увеличение скорости сканирования при сохранении точности и надежности контроля, что обеспечивается за счет того, что устройство содержит блок контрольно-измерительной аппаратуры, дистанционного управления и обмена данными и механизм перемещения по винтовой траектории, обеспечивающий возможность изменения направления движения.
Изобретение относится к нефтегазодобывающей промышленности и может найти применение при опрессовке колонны насосно-компрессорных труб (НКТ). .

Изобретение относится к области испытательной техники и может быть использовано во многих отраслях промышленности, связанных с использованием газообразных материалов, таких как газ или пар.

Изобретение относится к области приборостроения и может быть использовано для дистанционного контроля состояния магистральных газопроводов и хранилищ с помощью диагностической аппаратуры, установленной на носитель - дистанционно-пилотируемый летательный аппарат (ДПЛА)

Изобретение относится к области контрольно-испытательной техники и может быть использовано в фармацевтической, медицинской, микробиологической промышленности, в частности при испытаниях асептических объектов с повышенными требованиями к воздухопроницанию их ограждающих строительных конструкций (ОСК), что обеспечивается за счет того, что используют обслуживающие данную полость замкнутого герметизированного контура (ПЗГК) приточную и вытяжную вентиляционные системы, при этом при отключенной вытяжной вентиляционной системы и закрытом ее запорно-регулирующем устройстве (ЗРУ) создают вентилятором приточной вентиляционной системы предельно допустимое избыточное давление в ПЗГК, регулируя величину избыточного давления, после чего замеряют объемные скорости воздушного потока, поступающего в ПЗГК воздуховода данной приточной вентиляционной системы, и воздушного потока, поступающего из ПЗГК, причем величина фактического удельного воздухопроницания одного м2 ОСК ПЗГК при предельно допустимом, избыточном давлении в ПЗГК не должна превышать величину расчетного удельного воздухопроницания одного м 2 ОСК при вышеуказанном предельно допустимом избыточном давлении в ПЗГК, а величину фактического удельного воздухопроницания одного м2 ОСК при предельно допустимом избыточном давлении в ПЗГК и расчетную удельную воздухопроницаемость одного м2 ограждающих строительных конструкций полости замкнутого герметизированного контура при предельно допустимом избыточном давлении в ней определяют описанном в пунктах формулы образом

Изобретение относится к области испытательной техники и направлено на создание простого и безопасного для операторов, работающих в герметично изолированных от внешних сред обитаемых помещениях, оперативного способа определения местонахождения негерметичного участка гидравлической магистрали системы терморегулирования объекта после установления факта негерметичности, что обеспечивается за счет того, что при осуществлении способа определения местоположения негерметичного участка замкнутой гидравлической магистрали, снабженной побудителем расхода и гидропневматическим компенсатором температурного изменения объема рабочего тела, снижают давление среды в газовой полости гидропневматического компенсатора до уровня стабилизации этого давления в пределах погрешности измерения

Изобретение относится к области испытательной техники и может быть использовано для измерения негерметичности изделий, работающих под избыточным давлением

Изобретение относится к области испытательной техники и может быть использовано для измерения негерметичности изделий, работающих под избыточным давлением

Изобретение относится к машиностроению и может быть использовано при испытаниях полостей устройств авиационной и ракетной техники, а также в других областях техники

Изобретение относится к области испытательной техники и может быть использовано в наземных испытаниях изделий на прочность и герметичность, а также в качестве контрольной операции подтверждения качества изготовления крупногабаритных криогенных емкостных конструкций, преимущественно топливных баков ракет-носителей, спроектированных с учетом криогенного упрочнения и нагруженных внутренним давлением в условиях криогенного захолаживания

Изобретение относится к области испытательной техники и может быть использовано для измерения негерметичности изделий, работающих под избыточным давлением
Наверх