Система регистрации папиллярных узоров

Изобретение относится к медицинской технике, в частности к области биометрии. Система регистрации папиллярных узоров содержит источник и многоэлементный приемник оптического излучения. Приемник оптического излучения связан с электронной памятью для хранения изображений и устройством обработки. В электронной памяти выходное изображение системы связано электрически не менее чем с двумя промежуточными изображениями через смешение путем усреднения в устройстве обработки значений интенсивности между элементами промежуточных изображений, соответствующими в разных промежуточных изображениях одной и той же области на поверхности считывания, и присвоение полученного значения интенсивности соответствующему этой области элементу выходного изображения. Каждое из промежуточных изображений связано электрически со светочувствительными элементами приемника оптического излучения, которые связаны оптически с источником оптического излучения и поверхностью считывания папиллярного узора через сформированное оптической системой изображение поверхности считывания папиллярного узора. В спектральном диапазоне чувствительности приемника оптического излучения суммарный поток рабочего излучения с длинами волн менее граничной длины волны L не менее чем в пять раз превосходит суммарный поток паразитного излучения с длинами волн более L. Применение изобретения позволит повысить качество получаемого изображения. 4 з.п.ф-лы, 3 ил.

 

Область техники

Изобретение относится к области биометрии, в частности к системам автоматизированной регистрации папиллярных узоров.

Уровень техники

Принципиальная схема типичной системы регистрации папиллярных узоров представлена на фиг.1. Источник света 1 излучает в направлении элемента 2, задающего положение поверхности 3 считывания регистрируемого объекта, такого, например, как папиллярные линии пальца или ладони руки. На поверхности считывания, за счет различия в отражении от участков, соответствующих впадинам и выступам папиллярного узора, световой поток от источника света становится носителем изображения этого папиллярного узора. Оптическая система, как правило, включающая коллектив 4, систему зеркал 5, объектив 6, защитное стекло 7 и микролинзы 8 над приемником изображения, принимает этот поток и формирует изображение папиллярного узора на светочувствительной поверхности 9 многоэлементного приемника изображения. Приемник изображения преобразует изображение из оптического в электронное цифровое в виде массива значений интенсивности, пропорциональных потоку излучения, попавшему на соответствующий светочувствительный элемент, и передает его в электронную память 10. Устройство обработки 11 приводит масштаб этого электронного изображения к стандартному, формируя тем самым выходное изображение системы.

Элемент, задающий положение регистрируемого объекта, как правило выполняется в виде оптически прозрачной равнобедренной прямоугольной призмы. Однако существуют варианты построения схемы регистрации папиллярных узоров, в которых роль элемента, задающего положение поверхности считывания, выполняют призмы сложной формы, цилиндрические элементы, плоскопараллельные пластины. В более редких вариантах роль элемента, задающего положение поверхности считывания, выполняет корпусной элемент системы.

Количество зеркал в оптической системе может быть различным и определяет форму и габаритные размеры системы.

Приемник излучения, как правило, выполнен в виде линейки или матрицы на основе транзисторов металл-оксид-полупроводник или приборов с зарядовой связью.

Общим недостатком указанных систем, вследствие крайне жестких требований к качеству изображения, является необходимость применения приемников изображения с относительно большими размерами светочувствительных элементов, что приводит к значительным общим размерам рабочей поверхности приемников и, как следствие, крайне высокой стоимости систем, построенных с их применением.

Причина значительной цены приемников большой площади состоит в высокой стоимости кремниевых пластин, из которых их изготавливают, и низком проценте использования площади таких пластин.

Так, на фиг.2а показано расположение на кремниевой пластине 12 диаметром 150 мм кристаллов 13 типичного приемника изображения для системы регистрации папиллярного узора ладоней с разрешением 1000 точек на дюйм. Такой приемник имеет размер светочувствительных элементов 6,8 микрометра и содержит 7216 элементов по горизонтали и 5412 по вертикали. Из фигуры можно видеть, что на пластине помещается только 4 таких кристалла. Кроме того, в этом случае полезная площадь пластины, используемая для изготовления кристаллов, составляет всего около 50% ее общей площади. Если же при изготовлении будет допущено всего четыре критических дефекта 14 производства, но расположенные, например, как показано на фиг.2а, тогда с данной пластины не будет получено ни одного годного кристалла.

Если же построить приемник с таким же количеством светочувствительных элементов, но размером 1,4 микрометра, тогда расположение кристаллов на пластине 15 диаметром 150 мм может быть, например, таким, как показано на фиг.2б. В этом случае на пластине помещается 137 кристаллов 16, которые занимают уже 80% площади пластины. При этом если при изготовлении будет допущено четыре критических дефекта 17 производства, расположенных так же, как показано на фиг.2а, тогда с данной пластины будет получено 133 годных кристалла. Таким образом, из-за дефектов потери составят всего 3% от общего количества кристаллов на пластине.

Однако, несмотря на очевидные преимущества, применение в системах регистрации папиллярных узоров приемников с малыми размерами светочувствительных элементов сдерживается недостаточным, для соответствия действующим стандартам в области биометрии, качеством формируемого изображения, в частности шумом и растеканием заряда между элементами. Основным таким стандартом для систем регистрации папиллярных узоров в настоящее время является FBI EBTS Appendix F.

Существуют немногочисленные варианты построения систем регистрации папиллярных узоров, реализующих требуемое разрешение и размер области считывания при применении относительно дешевых приемников изображения.

Так, в патенте США 5859420 от 12.01.1999 по МПК G01B 11/124 показана система, в которой разрешение системы регистрации папиллярных узоров увеличено путем разделения системы на несколько каналов, каждый из которых формирует отдельную часть изображения регистрируемого объекта, после чего части изображения объединяются в выходное изображение.

В патенте США 6928195 от 09.08.2005 по МПК G06K 9/32 показана система, позволяющая повысить разрешение системы регистрации папиллярных узоров, без увеличения количества светочувствительных элементов приемника изображения, путем применения в системе качающегося зеркала для формирования нескольких пространственно разнесенных промежуточных изображений и формирования выходного изображения, в котором чередуются элементы промежуточных изображений.

Данная система является наиболее близким аналогом предлагаемого изобретения. Главным ее недостатком является наличие дополнительных элементов и процедур, которые хотя и позволяют применить относительно недорогой приемник, однако при этом сами вносят дополнительный вклад в дороговизну системы и снижают ее надежность. Как следствие, не достигается существенного снижения общей стоимости системы, но при этом снижается надежность, увеличиваются габариты, повышается энергопотребление и снижается быстродействие системы.

Задача изобретения

Задачей настоящего изобретения является реализация системы регистрации папиллярных узоров, обладающей низкой стоимостью, высокой надежностью и при этом обеспечивающей высокое качество изображения, малые габаритные размеры, высокое быстродействие и пониженное энергопотребление.

Сущность изобретения

Указанная задача решается за счет того, что система регистрации папиллярных узоров содержит источник света, элемент, задающий положение поверхности считывания папиллярного узора, оптическую систему, многоэлементный приемник изображения, электронную память для хранения изображений и устройство обработки, причем в электронной памяти выходное изображение системы связано электрически не менее чем с двумя промежуточными изображениями через смешение, в устройстве обработки, значений интенсивности между элементами промежуточных изображений, соответствующими в разных промежуточных изображениях одной и той же области на поверхности считывания, и присвоением полученного значения интенсивности соответствующему этой области элементу выходного изображения, а каждое из промежуточных изображений связано электрически со светочувствительными элементами приемника изображений, которые связаны оптически с источником излучения и поверхностью считывания папиллярного узора через сформированное оптической системой изображение поверхности считывания папиллярного узора, в котором, в спектральном диапазоне чувствительности приемника изображений, суммарный поток рабочего излучения с длинами волн менее граничной длины волны L не менее чем в пять раз превосходит суммарный поток паразитного излучения с длинами волн более L, а величина L соответствует условию

где L - граничная длина волны, выраженная в микрометрах;

Т - шаг между центрами чувствительных к рабочему излучению элементов приемника изображения, выраженный в микрометрах;

А - эффективная числовая апертура оптической системы, формирующей изображение поверхности считывания на светочувствительной поверхности приемника излучения, со стороны приемника изображения;

N - количество светочувствительных элементов приемника изображения, приходящееся на один элемент выходного изображения.

Роль устройства обработки изображений для смешения промежуточных изображений, предпочтительно, выполняет компьютер. В другом варианте осуществления изобретения роль устройства обработки изображений для смешения промежуточных изображений может выполнять цифровой сигнальный процессор.

Устройство обработки, электронная память и приемник изображений могут быть объединены в один конструктивный элемент.

Приемник изображения, предпочтительно, является монохроматическим.

Результат изобретения

Техническим результат, обеспечиваемый приведенной совокупностью признаков, заключается в снижении стоимости, повышении надежности, обеспечении высокого качества изображения, малых габаритных размеров, высокого быстродействия и пониженного энергопотребления системы регистрации папиллярных узоров.

Осуществление изобретения

Пример осуществления изобретения может быть показан на основе схемы, приведенной на фиг.1. Источник света, представляющий собой световую панель 1, построенную на светодиодах с доминантной длиной волны излучения 470 нанометров, излучает в направлении равнобедренной прямоугольной призмы 2 из оптически прозрачного материала. Пройдя входную катетную грань призмы 21, свет попадает под углом полного внутреннего отражения на гипотенузную грань 3, задающую собой поверхность считывания папиллярного узора. На этой поверхности располагают регистрируемый объект, такой, например, как папиллярные линии пальца или ладони руки. В местах, соответствующих выступам папиллярного узора, световой поток от источника света частично поглощается регистрируемым объектом, в остальных зонах он полностью отражается гипотенузной гранью призмы. Таким образом световой поток становится носителем изображения регистрируемого папиллярного узора. Далее свет проходит через выходную катетную грань 22 призмы, коллектив 4, отражается на зеркале 5 и попадает в объектив 6. На рабочей поверхности одного из оптических компонентов объектива напылено интерференционное покрытие, выполняющее роль отрезающего светофильтра, блокирующего излучение с длиной волны более 490 нанометров. Объектив, с выходной числовой апертурой не менее 0,08, формирует изображение регистрируемого объекта на светочувствительной поверхности 9 монохроматической камеры, построенной на матрице транзисторов металл-оксид-полупроводник с шагом элементов 1,7 микрометра. Причем на один светочувствительный элемент приходится один элемент требуемого разрешения на регистрируемом объекте, а элементы оптической системы и приемник изображения жестко закреплены на едином корпусе. Камера формирует цифровое изображение регистрируемого объекта в виде массива значений интенсивности, связанных со световым потоком, попавшим на соответствующий светочувствительный элемент, и передает его через интерфейс USB в память 10 компьютера с процессором 11. Таким образом происходит передача четырех промежуточных изображений, из которых формируется одно выходное изображение. Для этого компьютерная программа вычисляет среднее значение интенсивности для одного и того же элемента во всех четырех промежуточных изображениях и присваивает полученное значение соответствующему элементу выходного изображения. Графически принцип такого смешения для участка изображения показан на фиг.3.

В другом варианте построения системы компьютерная программа осуществляет смешение изображений путем одновременного усреднения и изменения масштаба значений интенсивностей, преобразуя диапазон интенсивностей от 0 до 255 единиц в диапазон от 0 до 65535. Это достигается суммированием смешиваемых значений интенсивности, умножением полученного значения на заданный коэффициент и присвоением полученного значения соответствующему элементу выходного изображения.

В еще одном варианте осуществления изобретения, для упрощения процедуры настройки системы, а именно для устранения необходимости ручной регулировки оптического увеличения, объектив формирует изображение, покрывающее количество светочувствительных элементов, превышающее требуемое количество элементов выходного изображения. При этом компьютерная программа осуществляет изменение масштаба, а именно сжатие, выходного изображения. Так, например, если объектив формирует изображение, покрывающее в каждом из двух перпендикулярных направлений количество светочувствительных элементов, на 10% большее, чем требуется элементов в соответствующих направлениях в выходном изображении, то компьютерная программа осуществляет сжатие, при котором в выходном изображении на каждый элемент приходится 1,12=1,21 светочувствительных элемента приемника. Кроме того, наряду с упрощением настройки, в этом случае, в соответствии с указанным условием 0,37·L1,5/(A·N·T1,2)<1, становится возможным применение более широкого спектрального диапазона, и, таким образом, обеспечение большего потока излучения, без ухудшения качества изображения и увеличения энергопотребления.

Заявителем были изготовлены несколько образцов сканеров папиллярного узора ладони с размером поверхности считывания 129×129 мм и разрешением на этой поверхности, равным 500 точкам на дюйм, в том числе с указанными выше параметрами. Устройство с этими параметрами стало первым известным сканером папиллярных узоров со столь малым размером светочувствительных элементов, которым было реализовано качество изображения, соответствующее стандарту FBI EBTS Appendix F. Экспериментальные данные подтвердили, что при осуществлении смешения требуемого для конкретного приемника количества промежуточных изображений и реализации указанного соотношения 0,37·L1,5/(A·N·T1,2)<1 возможно построение системы регистрации папиллярных узоров, соответствующей данному стандарту, с применением любого существующего приемника изображений с малым размером светочувствительных элементов. При этом превосходство рабочего потока излучения над паразитным не менее чем в пять раз сводит влияние этого паразитного потока на качество изображения до уровня, сравнимого с влиянием вторичных факторов, таких как рассеяние света и паразитные отражения в оптической системе.

Вследствие малого размера светочувствительных элементов и применения монохроматической камеры, каждый элемент которой чувствителен к рабочему излучению, общий размер приемной площадки примененного приемника изображения сравнительно мал, это привело к снижению стоимости приемника и меньшему энергопотреблению. Также из-за малых размеров светочувствительной поверхности фокусное расстояние объектива значительно, по сравнению с ближайшим аналогом, сократилось, что привело к уменьшению габаритов системы и стоимости объектива. В системе отсутствуют подвижные элементы, что приводит к повышению, по сравнению с ближайшим аналогом, быстродействия и надежности системы. Смешение промежуточных изображений и применение излучения с относительно короткими длинами волн позволило получить изображение высокого качества, соответствующими стандарту FBI EBTS Appendix F.

Краткое описание чертежей

Уровень техники и сущность изобретения поясняется чертежами.

На фиг.1 изображена типичная схема построения системы регистрации папиллярных узоров.

На фиг.2 показано расположение кристаллов приемника изображения с количеством светочувствительных элементов 7216 по горизонтали и 5412 по вертикали на пластине диаметром 150 мм при различных размерах светочувствительных элементов. На фиг.2а показаны кристаллы с размером элементов 6,8 микрометра, на на фиг.2б изображены кристаллы с размером элементов 1,4 микрометра.

На фиг.3 изображена схема смешения промежуточных изображений в выходное изображение путем усреднения значений интенсивностей элементов изображений.

1. Система регистрации папиллярных узоров, содержащая источник оптического излучения, выполненный с возможностью излучения в направлении элемента, задающего положение поверхности считывания папиллярного узора, и связанный с оптической системой, многоэлементный приемник оптического излучения, выполненный с возможностью формирования цифрового изображения регистрируемого объекта и связанный с электронной памятью для хранения изображений и устройством обработки, отличающаяся тем, что в электронной памяти выходное изображение системы связано электрически не менее чем с двумя промежуточными изображениями через смешение путем усреднения в устройстве обработки значений интенсивности между элементами промежуточных изображений, соответствующими в разных промежуточных изображениях одной и той же области на поверхности считывания, и присвоение полученного значения интенсивности соответствующему этой области элементу выходного изображения, а каждое из промежуточных изображений связано электрически со светочувствительными элементами приемника оптического излучения, которые связаны оптически с источником оптического излучения и поверхностью считывания папиллярного узора через сформированное оптической системой изображение поверхности считывания папиллярного узора, причем в спектральном диапазоне чувствительности приемника оптического излучения суммарный поток рабочего излучения с длинами волн менее граничной длины волны L не менее чем в пять раз превосходит суммарный поток паразитного излучения с длинами волн более L, а величина L соответствует условию

где L - граничная длина волны, выраженная в микрометрах;
Т - шаг между центрами чувствительных к рабочему излучению элементов приемника оптического излучения, выраженный в микрометрах;
А - эффективная числовая апертура оптической системы, формирующей изображение поверхности считывания на светочувствительной поверхности приемника оптического излучения;
N - количество светочувствительных элементов приемника оптического излучения, приходящееся на один элемент выходного изображения.

2. Система по п.1, отличающаяся тем, что устройством обработки является компьютер.

3. Система по п.1, отличающаяся тем, что устройством обработки является цифровой сигнальный процессор.

4. Система по п.1, отличающаяся тем, что приемник оптического излучения, электронная память и устройство обработки объединены в один конструктивный элемент.

5. Система по п.1, отличающаяся тем, что приемник оптического излучения является монохроматическим.



 

Похожие патенты:

Изобретение относится к области медицины, в частности к медицинской криминалистике. .

Изобретение относится к медицинской технике, в том числе к области биометрической идентификации личностей. .

Изобретение относится к медицине, а именно к устройствам и способам измерения скорости заживления биологической ткани. .
Изобретение относится к медицине, а именно к реаниматологии, и может быть использовано для определения стадии гипоксического повреждения и вероятности оживления пациента в клинических условиях.

Изобретение относится к области медицины. .
Изобретение относится к технике защиты различных объектов от доступа посторонних лиц путем идентификации личности по изображению ее радужной оболочки глаза (РОГ) и может быть использовано при диагностике состояния органов и функциональных систем организма по РОГ.

Изобретение относится к получению частиц двуокиси кремния и применению этих частиц в качестве проявляющихся агентов при получении скрытых отпечатков пальцев. .

Изобретение относится к измерительной технике и может быть использовано в медицине при измерении физиологических параметров человека, в частности количества глюкозы в крови с использованием неинвазивных методов, а также для идентификации людей при измерении биометрических параметров, в частности рисунка складок руки при ее сжатии

Изобретение относится к способу и системе, обеспечивающим определение возраста пользователя в сети по данным большого объема. Техническим результатом является обеспечение возможности точной фильтрации пользователей сети по возрасту. Предложенный способ содержит следующие этапы: получение базовых данных о возрасте пользователя и задание начального веса для каждого типа этих данных; получение веса возраста пользователя в каждом типе базовых данных о возрасте в соответствии с начальным весом и степенью схожести возраста пользователя в разных типах этих данных; поиск в базовых данных о возрасте возраста с наибольшим весом и оценка возраста пользователя по возрасту с наибольшим весом. Предложенные способ и система позволяют увеличить точность определения возраста пользователя. 2 н. и 12 з. п. ф-лы. 6 ил, 1 табл.

Изобретение относится к медицине, судебной медицине и предназначено для идентификации личности неопознанных трупов и их фрагментов. Изобретение также может быть использовано при необходимости прижизненной идентификации человека в случае изменения внешности. При наличии прижизненной рентгеновской компьютерной томограммы, включающей соответствующий костный фрагмент черепа, проводят компьютерную томографию посмертного образца без использования аутопсии. Сравнение проводят в цифровом формате. Устанавливают идентичность личности человека на основании идентичности плотности костной ткани и индивидуальных особенностей структуры кости. Для проведения исследования используют челюстно-лицевой томограф «RayscanSymphony М», программу «Xelix Dental». При этом костный фрагмент представляет собой следующий фрагмент костных образований: ячейки сосцевидного отростка, турецкое седло, височно-нижнечелюстной сустав. Способ позволяет расширить перечень костных фрагментов, достаточных для идентификации личности, обеспечивает высокую точность идентификации - до 99% по единственному имеющемуся костному фрагменту («пазлу») из указанных, снижение искажения формы сигнала и лучевой нагрузки, хорошую контрастность, четкость снимков, удобство и надежность при сохранении информации. 4 ил.

Изобретение относится к медицинской технике. Устройство для определения функционального состояния опорно-двигательного аппарата содержит регистратор параметров опорно-двигательного аппарата. Регистратор включает датчики веса и поддерживаемую опорными элементами опорную пластину для стоп с установленным под пластиной датчиком изображения отпечатка подошвенной поверхности стоп, подключенным к компьютеру. Опорная пластина выполнена из оптически прозрачного материала, а опорные элементы выполнены в виде стоек, снабженных датчиками веса. Информационные выходы датчиков веса связаны с компьютером, выполненным с возможностью регистрации и одновременного отображения в одной системе координат изображения отпечатка подошвенной поверхности стоп и данных о положении центра давления на каждой из стоп и общего центра давления стоп. Применение изобретения позволит расширить функциональные возможности устройства, сократить временные затраты при проведении исследования, повысить точность определения положения центров давления по отношению к положению стоп за счет обеспечения возможности оперативного комплексирования результатов компьютерной плантографии и стабилометрии. 4 з.п. ф-лы, 5 ил.

Изобретение относится к области медицины, а именно к судебной медицине, и может быть использовано для определения давности повреждений на трупе. Определяют коэффициент теплопроводности мягких тканей области повреждений, концентрации алкоголя в крови трупа, расчет. Расчет давности повреждений выполняется по формулам, различающимся для случаев наличия либо отсутствия алкоголя в крови трупа. Способ позволяет повысить точность определения давности повреждений на трупе, в том числе повреждений, расположенных на слизистой оболочке рта. 2 пр.

Изобретение относится к области медицины, а именно к судебной медицине, и может быть использовано для определения давности повреждений у живых лиц. Измеряют температуру области повреждения и неповрежденного участка и температуру окружающей среды. Давность повреждений у живых лиц определяют по соответствующей формуле. Способ позволяет повысить точность определения давности повреждений у живых лиц, в том числе повреждений, расположенных на слизистой оболочке рта. 2 пр.

Изобретение относится к медицине, а именно к судебной медицине, и может быть использовано для определения давности локального повреждения мягких тканей по температуре области мягких тканей. Способ заключается в проведении дистанционной термографии, с помощью которой определяют максимальную и минимальную температуры области локального повреждения мягких тканей и интактного участка. Кроме того, определяют площадь локального повреждения мягких тканей, однородную по температуре, и коэффициент излучения. На основании полученных данных рассчитывают давность локального повреждения мягких тканей. Способ позволяет повысить точность и расширить функциональные возможности определения давности локального повреждения мягких тканей (кровоподтека, внутримышечной инъекции), за счет максимально полного учета теплового состояния тела пациента в области локального повреждения мягких тканей. 2 пр.

Изобретение относится к области антропологии, а также к судебной медицине, и предназначено для выполнения графических и скульптурных реконструкций лиц древних людей с различных территорий и идентификации личности по костным останкам, в частности по черепу. По черепу для монголоидных групп определяют пол, возраст, форму головы и морфологические признаки лица по алгоритму черепного соответствия по таблице 1. Далее по структурным элементам черепа рассчитывают признаки, не имеющие прямых аналогов на черепе: физиономическую высоту лица (ФВЛ), высоту уха (ВУ), ширину носа (ШН), ширину между носогубными складками (ШМН-ГС), ширину фильтра (ШФ), ширину рта (ШР) по уравнениям. ФВЛ=90,515+0,748×(МВЛ+6 мм) - мужчины (муж); ФВЛ=86,357+0,746×(МВЛ+6 мм) - женщины (жен); ВУ=55,488+0,073×(МВЛ+6 мм) - муж; ВУ=45,650+0,110×(МВЛ+6 мм) - жен; где МВЛ - морфологическая высота лица. ШН=12,115+0,584×ШМК - муж; ШН=13,780+0,510×ШМК - жен; ШМН-ГС=26,944+0,763×ШМК - муж; ШМН-ГС=25,657+0,685×ШМК - жен; ШФ=7,295+0,318×ШМК - муж; ШФ=7,792+0,202×ШМК - жен; где ШМК - ширина между клыковыми точками. ШР=25,613+0,672×ШМВП - муж; ШР=22,915+0,541×ШМВП - жен; где ШМВП - ширина зубной дуги на уровне вторых премоляров. По измеренным и вычисленным параметрам формируют графическую и/или скульптурную реконструкцию лица. Способ позволяет, за счет рассчитывания признаков, не имеющих прямых аналогов на черепе, по уравнениям регрессии, включающим зависимости, повысить степень достоверности идентификации личности в словесном портрете при графическом и/или скульптурном способе восстановления лиц людей, принадлежащих к монголоидному антропологическому типу.4 табл., 3 ил.

Изобретение относится к медицине, а именно к терапевтической стоматологии, и может быть использовано для контроля эндодонтического лечения постоянных зубов. Проводят исследование кривизны корневого канала зуба на конусно-лучевом компьютерном томографе «Picasso Trio» с программой Ezlmplant. Компьютерный томограф обрабатывает изображение и передает его на компьютер. В программе Ezmplant находятся четыре активных окна изображений объекта: зубы верхней и нижней челюстей во фронтальной - coronal view, сагиттальной - sagittal view, аксиальной - axial view проекциях и 3D-реконструкция объекта. Настраивают толщину среза тканей челюстно-лицевой области пациента в 1 мм для всех активных окон изображения, после чего выбирают для работы изображение исследуемого зуба в нужном активном окне. Устанавливают курсор мыши в активном окне и нажатием кнопки «enter» клавиатуры убирают оси, слева в меню программы в разделе Measure - измерение - активизируют функцию Angle - измерение углов - нажатием основной кнопки мыши. Автоматически в меню программы активизируется раздел «Tool Options», в котором выбирают метод измерения угла «4-Point Click» - по 4-м точкам. Далее курсор мыши устанавливают за пределами зуба, для наглядности, ориентируясь на устье корневого канала и наиболее явную точку изгиба просвета корневого канала и нажатием на клавишу мыши за пределами зуба получают первую точку первой линии. Проводят первую линию ориентировочно через вершину строящегося треугольника и выводят за пределы зуба, перекрывая просвет корневого канала. Нажатием на клавишу мыши обозначают вторую точку первой линии, получают линию №1 - одну сторону определяемого угла искривления корневого канала зуба - точки 1 и 2. Перемещают курсор на предполагаемую вершину угла треугольника, определяющего величину искривления корневого канала зуба, линии при этом неразрывны между собой. Нажатием на клавишу мыши обозначают первую точку второй линии - третья точка. Затем смещают курсор в сторону верхушки корня, проводя линию через нее за пределы зуба, перекрывая просвет корневого канала, и обозначают вторую точку второй линии - четвертая точка; получают точку 4 - вторую точку второй линии. Выключают функцию Angle, активизируют все четыре точки угловой конструкции и уточняют их положение, получая конечную величину угла искривления корневого канала в градусах, которую компьютерная программа рассчитывает автоматически. С учетом величины искривления корневого канала выбирают инструменты для качественной эндодонтической обработки корневого канала. Способ позволяет точно измерить углы искривления корневых каналов зубов за счет возможности многократной активизации всех элементов угловой конструкции и коррекции расположения точек и линий угловой конструкции. 5 ил., 2 пр.

Изобретение относится к судебной медицине и криминалистике и может быть использовано при графической реконструкции лица по черепу. Определяют и обозначают линию смыкания век на фронтальном изображении черепа в позиции франкфуртской горизонтали. По средней части стенок орбиты проводят линии, повторяющие изгиб их средней части и соответствующие общему направлению четырех стенок орбиты до полного их смыкания. Изогнутые линии образуют четырехугольник. Из точек пересечения полученного четырехугольника проводят две диагонали, вместе с линией смыкания век они образуют треугольник, центр которого соответствует центру радужной оболочки глаза. Способ позволяет определить смещение центра радужной оболочки по вертикали от линии разреза глаз в зависимости от индивидуальной формы глазницы. 4 ил.
Наверх