Устройство для измерения параметра низкочастотного шума

Изобретение относится к области радиоизмерений, а именно к измерению шумов полупроводниковых изделий, и может быть использовано для лабораторных и цеховых измерений параметра шума γ. Устройство для измерения параметра низкочастотного шума γ содержит два независимых канала усиления, к выходу которых подключен дифференциальный усилитель с подачей сигнала на логарифмическую шкалу, и устройство автоматической регулировки усиления предварительного усилителя между исследуемым изделием и независимыми каналами усиления. При этом в схему устройства параллельно вводится два дополнительных канала селективного усиления с предварительным усилителем на входе с управляемым коэффициентом усиления с выхода одного из дополнительных каналов усиления, выходные сигналы которых подаются на дифференциальный усилитель, с выхода которого сигнал усредняется с выходным сигналом дифференциального усилителя двух основных каналов усиления через схему усреднения, с выхода которой сигнал подается на логарифмическую шкалу, непосредственно отображающую параметр низкочастотного шума γ. При этом все четыре канала работают в одинаковой полосе частот на разных центральных частотах. Технический результат - увеличение достоверности измерений при сохранении возможности непосредственного получения значения параметра шума γ на шкале прибора. 1 ил.

 

Изобретение относится к области радиоизмерений, а именно к измерению шумов полупроводниковых изделий, и может быть использовано для лабораторных и цеховых измерений параметра шума γ.

Известно устройство [1], применимое для непосредственного получения параметра низкочастотного шума γ, в конструкции которого применяются два независимых канала, работающих в одинаковой полосе частот на разных центральных частотах, дифференциальный усилитель, логарифмическая шкала и устройство автоматической регулировки усиления, позволяющее автоматически калибровать коэффициент усиления устройства через предварительный усилитель.

Недостатком данного устройства является высокая погрешность измерений, связанная с применением всего двух значений измеренного низкочастотного шума для получения параметра шума γ.

Известно устройство [2], позволяющее измерять параметр шума γ с повышенной точностью с помощью измерений значений шума на нескольких частотах через широкополосный усилитель.

Недостатком данного устройства является применение широкополосного усилителя, позволяющего проводить измерения в широком диапазоне частот с низкой погрешностью.

Изобретение направлено на увеличение достоверности измерений при сохранении возможности непосредственного получения значения параметра шума γ на шкале прибора.

Это достигается тем, что в схему устройства между исследуемым изделием и логарифмической шкалой вводятся дополнительно два параллельных независимых канала, работающих в одинаковой полосе частот на разных центральных частотах, дифференциальный усилитель, устройство автоматической регулировки усиления, позволяющее автоматически калибровать коэффициент усиления, предварительный усилитель, схема усреднения сигналов с двух дифференциальных усилителей основных и дополнительных каналов для подачи сигнала на шкалу прибора.

На чертеже дана блок-схема предлагаемого устройства. Оно содержит исследуемое изделие 1, предварительный усилитель 2 и предварительный усилитель 3 с изменяемыми коэффициентами усиления, селективный канал прямого усиления 4, селективный канал прямого усиления 5, селективный канал прямого усиления 6, селективный канал прямого усиления 7, в каждом из которых есть квадратичный детектор, автоматическую регулировку усиления 8, автоматическую регулировку усиления 9, предварительного усилителя 2 и предварительного усилителя 3. Кроме того, в измерителе имеется дифференциальный усилитель 10 и дифференциальный усилитель 11, схема усреднения сигналов 12 и логарифмическая шкала 13.

Устройство работает следующим образом. Шумовой сигнал исследуемого изделия 1, после предварительного усиления 2 и 3 подается на две пары селективных каналов прямого усиления 4, 5 и 6, 7 с квадратичными детекторами и центральными частотами усиления 200 Гц, 1 кГц и 100 Гц, 500 Гц. Ширина полосы частот в каналах Δf равна 200 Гц. Введение автоматической регулировки усиления 8, 9 изменяет коэффициент усиления предварительного усилителя 2, 3 таким образом, что на выходе селективных каналов прямого усиления 4, 7 напряжение остается постоянным. Сигнал с выходов селективных каналов подается через дифференциальные усилители 10, 11 на схему усреднения 12 и шкалу вольтметра 13, отградуированную в значениях γ. Применение измерений с помощью четырех селективных усилителей позволяет повысить точность получения параметра шума γ за счет контроля напряжения шума на 4 частотах.

Источники информации

1. Устройство измерения параметра низкочастотного шума γ. Патент РФ №2294545. Опубл. 27.02.2007. Бюл. №6

2. Кострюков С.А. Автоматизированная установка для измерения СПМ низкочастотных шумов // Мат. докл. научн. - техн. сем. "Шумовые и деградационные процессы в полупроводниковых приборах". М.: 2004. С.106-109.

Устройство для измерения параметра низкочастотного шума γ, включающее в себя два основных независимых канала усиления, к выходу которых подключен дифференциальный усилитель с подачей сигнала на логарифмическую шкалу и устройство автоматической регулировки усиления предварительного усилителя между исследуемым изделием и независимыми каналами усиления, отличающийся тем, что в схему устройства параллельно введены два дополнительных канала селективного усиления с предварительным усилителем на входе с управляемым коэффициентом усиления с выхода одного из дополнительных каналов усиления, выходные сигналы которых подаются на дифференциальный усилитель, с выхода которого сигнал усредняется с выходным сигналом дифференциального усилителя двух основных каналов усиления через схему усреднения, с выхода которой сигнал подается на логарифмическую шкалу, непосредственно отображающую параметр низкочастотного шума γ, при этом все четыре канала работают в одинаковой полосе частот на разных центральных частотах.



 

Похожие патенты:

Изобретение относится к области радиотехники и может быть использовано в адаптивных радиоприемных устройствах, адаптивных системах радиосвязи, адаптивных антенных системах, радиоприемных устройствах систем радиомониторинга и радиолокационных систем.

Изобретение относится к области гидроакустики и производит определение отношения сигнал/помеха при одновременном присутствии и сигнала, и помехи на входе приемного устройства.

Изобретение относится к системам передачи данных и может быть использовано в измерительной технике, для измерения среднего значения, дисперсии, средневыпрямленного значения, максимального значения и кажущейся частоты помехи, действующей в канале связи.

Изобретение относится к области электронных измерений, к измерениям в технике радиоприема. .

Изобретение относится к радиотехнике и может быть использовано в радиолокации, радионавигации и системах связи для измерения отношения сигнала/шум, повышения точности и достоверности получаемой информации и контроля качества канала связи.

Изобретение относится к пассивной радиолокации и может использоваться для измерения мощности шумовых сигналов в широком диапазоне высоких частот. .

Изобретение относится к области измерительной техники и может быть использовано для измерения собственных шумов медицинских электродов для съема поверхностных биопотенциалов в присутствии шума измерительной системы, значительно превышающего измеряемый.

Изобретение относится к метрологии: к измерительным генераторам шума, и может быть использовано для поверки измерителей коэффициента шума различных электронных устройств.

Изобретение относится к области радиоизмерений, а именно к измерению малых отношений сигнал/шум. .

Изобретение относится к радиолокации и может быть использовано для поддержания постоянного уровня шумов на выходе приемного тракта. .

Изобретение относится к области контрольно-измерительной техники и решает задачу выделения исследуемого сигнала из смеси с помехой

Изобретение относится к измерительной технике. Сущность: устройство содержит измерительную интегральную схему с элементами с перестраиваемыми параметрами, вход которой соединен с генератором шума отрезка линии передачи, выход которого соединен с входом измеряемого четырехполюсника, измеритель коэффициента шума. Измерительная интегральная схема дополнительно содержит второй отрезок линии передачи на выходе, две емкости, резистор, индуктивность, две контактные площадки для подачи питания к измеряемому четырехполюснику. Элементы с перестраиваемыми параметрами выполнены в виде полевых транзисторов с барьером Шотки. На затвор полевого транзистора подают управляющее напряжение от соответствующего источника. Величина сопротивления резистора на порядок больше величины волнового сопротивления отрезка линии передачи на входе, величины индуктивности и емкости определяются из математических формул. Технический результат: расширение рабочей полосы частот, повышение точности измерений, упрощение устройства. 1 з.п. ф-лы, 3 ил.

Изобретение относится к измерительной технике. Сущность: устройство содержит измерительную интегральную схему с перестраиваемыми параметрами, вход которой соединен с генератором шума посредством центрального проводника в виде отрезка линии передачи, выход которого соединен с входом измеряемого четырехполюсника, измеритель коэффициента шума. Измерительная интегральная схема содержит второй центральный проводник в виде отрезка линии передачи, две емкости, резистор, индуктивность, элемент с перестраиваемыми параметрами в виде полевого транзистора с барьером Шотки и две контактные площадки для подачи питания к измеряемому четырехполюснику. Величина сопротивления резистора на порядок больше величины волнового сопротивления отрезка линии передачи на входе, величины индуктивности и емкости определяются из математических формул. Технический результат: расширение рабочей полосы частот, повышение точности измерений, упрощение устройства. 1 з.п. ф-лы, 4 ил.

Изобретение относится к области измерительной техники и касается способа измерения фактора шума микроканальной пластины. Способ включает снятие сигнала со всей площади люминесцентного экрана, который осуществляется в процессе изготовления МКП, регистрацию сигнала каждого импульса с выхода МКП, его усиление и подачу на многоканальный амплитудный анализатор импульсов. Сигналы анализируют по амплитудам и определяют коэффициент вариации усиления микроканальной пластины, пропорциональный фактору шума. Технический результат заключается в повышении точности измерений и обеспечении возможности контроля фактора шума микроканальной пластины в процессе ее изготовления. 2 ил.

Изобретение относится к измерительной технике на СВЧ. Устройство для измерения полного сопротивления и шумовых параметров двухполюсника на СВЧ, содержащее измеритель частотных характеристик и интегральную схему в составе центральной линии передачи, отрезка линии передачи, соединенного с центральной линией передачи, электрических ключей - полупроводниковых приборов, управляемых постоянными напряжениями, измеритель частотных характеристик соединен с одним концом центральной линии передачи, другой ее конец - с измеряемым двухполюсником. В котором в качестве измерителя частотных характеристик используют измеритель спектральной плотности мощности шума, интегральная схема выполнена в виде монолитной интегральной схемы на полупроводниковой подложке, при этом отрезок линии передачи выполнен равным одной восьмой длины волны в линии передачи, в качестве электрических ключей используют полевые транзисторы с барьером Шотки и, по меньшей мере, в виде одной пары, при этом в каждой упомянутой паре исток одного полевого транзистора с барьером Шотки соединен с центральной линией передачи на расстоянии одной восьмой длины волны в линии передачи от места соединения измеряемого двухполюсника и между парами, его сток с одним концом отрезка линии передачи, другой конец которого соединен со стоком другого полевого транзистора с барьером Шотки, его исток заземлен, постоянные управляющие напряжения подают на затворы каждого полевого транзистора с барьером Шотки от соответствующего источника постоянного управляющего напряжения. Технический результат заключается в расширении рабочей полосы частот, в повышении точности измерения путем снижения погрешности измерения и в упрощении устройства при сохранении возможности автоматизации. 4 ил.

Изобретение относится к радиотехнике и может быть использовано в радиосистемах, в которых осуществляется оценка текущей информации о помехово-сигнальной обстановке и уровне отношения сигнал/помеха в тракте промежуточной частоты с целью адаптации к ней различных параметров радиоприемных устройств. Техническим результатом изобретения является повышение достоверности результатов совместного измерения средней мощности сигнала, шума и отношения мощностей сигнал/помеха в радиоканале, а также существенное сокращение времени измерения отношения мощностей сигнал/помеха за счет их параллельной обработки. Технический результат достигается за счет того, что в известное устройство, содержащее приемную антенну, линейный приемный тракт, полосовой фильтр, квадратичный детектор, интегратор (фильтр нижних частот) дополнительно введены первый - шестой электронные ключи, генератор тактовых импульсов, переключатель режимов, первый и второй формирователи импульсов, элемент ИЛИ, дополнительный усилитель, перемножитель, второй интегратор (фильтр нижних частот), вычитающее устройство, первый и второй АЦП, первый и второй накопители импульсов, первый и второй усреднители, вычислитель отношения, устройство управления и блок индикации. 2 ил.

Изобретение относится к области техники радиосвязи, конкретнее к оцениванию условий радиосвязи по результатам зондирования ионосферы сигналами с линейной частотной модуляцией (ЛЧМ), и может быть использовано для построения технических средств ионосферно-волновой частотно-диспетчерской службы, входящей в состав системы радиосвязи. Задача изобретения в том, чтобы использовать результаты НЗ для оценивания отношения сигнал/шум в канале связи, учитывая особенности применяемого в нем конкретного связного сигнала. Поставленная задача достигается тем, что в способе оценивания отношения сигнал/шум в полосе ΔFC частот по данным ЛЧМ зондирования ионосферы, заключающемся в излучении передатчиком, имеющем мощность Pпрд з, непрерывного ЛЧМ сигнала и обработке его в приемнике, с помощью преобразователя осуществляют гетеродинирование принимаемого зондирующего ЛЧМ сигнала и его предварительную фильтрацию в диапазоне частот от -ΔFпр/2 до ΔFпр/2, с помощью фильтра разностной частоты выполняют фильтрацию в диапазоне частот от -ΔFфр/2, до ΔFфр/2, вычисляют быстрое преобразование Фурье (БПФ), дополнительно с помощью фильтра помехи выходной сигнал преобразователя подвергают фильтрации, с помощью устройства выравнивания выходные отсчеты фильтра разностной частоты совмещают по времени с выходными отсчетами фильтра помехи, а затем отсчеты с выходов устройства выравнивания и фильтра помехи подают на входы устройства оценивания и в нем вычисляют оценку отношения сигнал/шум для частоты fa анализа и k-го выхода БПФ по формуле h k 2 ( f a ) = K п р д 2 ∑ m − 0 N c − 1 S c 0 2 ( f m − f a ) ∑ m = 0 N c − 1 S c 0 2 ( f m − f a ) S з 2 ( f m ) S п р м з k 2 ( f m ) P п ( f a ) , где Kпрд с/Pпрд з; Pпрд с - мощность передатчика, излучающего связной сигнал; S c 0 2 ( f ) - модуль энергетического спектра излучаемого связного сигнала; S з 2 ( f ) - модуль энергетического спектра излучаемого зондирующего сигнала; S п р м   з   k 2 ( f ) - модуль энергетического спектра принимаемого зондирующего сигнала, вычисляемый по k-ому выходу вычислителя БПФ; Nc - количество составляющих в спектре излучаемого связного сигнала; fm - частота m-ой составляющей в спектре излучаемого связного сигнала; Pп(f) - мощность помехи на входе приемника, вычисляемая по выходному напряжению фильтра помехи. Достигаемым техническим результатом является то, что в процессе оценивания отношения сигнал/шум учитываются индивидуальные признаки канала связи в виде характеристик применяемого связного сигнала и тем самым повышается достоверность получаемой оценки. 2 ил.

Изобретение относится к пассивной радиотеплолокации и может использоваться для измерения мощности шумовых сигналов в системах дистанционного зондирования различных природных сред, промышленности, медицинских технологиях. Техническим результатом является расширение функциональных возможностей по оперативной настройке на различные диапазоны измерений с учетом неидеальностей входящих во входной блок СВЧ элементов. Для достижения этого технического результата в радиометр, содержащий микроконтроллер, антенну, направленный ответвитель, генератор шума, высокочастотный селектор, n выходов которого соединены с первыми входами n циркуляторов, вторые входы которых подключены к n согласованным нагрузкам, n последовательно соединенных приемников, предварительных усилителей низкой частоты, синхронных фильтров, усилителей низкой частоты, фильтров высоких частот, компараторов, вторые входы которых соединены с общей шиной радиометра, а выходы n компараторов соединены с n входами микроконтроллера, первый выход которого подключен к управляющему входу высокочастотного селектора, m выходов соединены с управляющими входами n синхронных фильтров, а второй выход микроконтроллера является выходом радиометра, причем направленный ответвитель, генератор шума, высокочастотный селектор, n циркуляторов и n согласованных нагрузок установлены на термостатированной плате и находятся с ней в тепловом контакте, введены установленные на термостатированной плате и находящиеся с ней в тепловом контакте n-1 генераторов шума, n-1 направленных ответвителей, n управляемых источников тока, выходы которых подключены к последовательно соединенным n генераторам шума и n направленным ответвителям, вторые входы n направленных ответвителей подключены к выходам n циркуляторов, а выходы n направленных ответвителей соединены с входами n приемников, первые входы управляемых источников тока объединены вместе и соединены с третьим выходом микроконтроллера, а их вторые входы подключены к k выходам микроконтроллера, антенна соединена с входом высокочастотного селектора. 5 ил.

Изобретение относится к области радиотехники и может быть использовано в адаптивных радиоприемных устройствах, адаптивных системах радиосвязи, адаптивных антенных системах, радиоприемных устройствах систем радиомониторинга и радиолокационных систем.Устройство содержит последовательно соединенные смеситель, сигнальный вход которого является входом устройства, полосовой фильтр, аналого-цифровой преобразователь, измеритель мощности сигнала, первый накопитель-усреднитель, первый регистр памяти и регистрирующий прибор, выход которого является выходом устройства, а также гетеродин, выход которого соединен с опорным входом смесителя непосредственно и аналого-цифрового преобразователя через делитель частоты, измеритель мощности аддитивной смеси сигнала и помехи, вход которого связан с выходом аналого-цифрового преобразователя, регистр хранения множителя усреднения L, выход которого связан со вторыми входами измерителя мощности аддитивной смеси сигнала и помехи и измерителя мощности сигнала, блок вычитания, второй накопитель-усреднитель и второй регистр памяти, а также арифметико-логическое устройство определения частного, второй вход которого соединен с выходом первого накопителя-усреднителя, а выход - со вторым входом регистрирующего прибора. Введен вычислитель центральной точки шумового кластера, выход которого соединен со вторым входом арифметико-логического устройства и третьим входом регистрирующего прибора. При этом выход измерителя аддитивной смеси сигнала и помехи через последовательно соединенные блок вычитания, второй накопитель-усреднитель и второй регистр памяти связан со входом вычислителя центральной точки шумового кластера, а выход измерителя мощности сигнала - со вторым входом блока вычитания. Технический результат заключается в снижении среднеквадратической ошибки оценивания дисперсии шума в приемном тракте в условиях проникновения части сигнала в канал оценивания дисперсии шума при сохранении остальных характеристик и простоты реализации. 1 ил.
Наверх