Способ изготовления активной массы для оксидно-никелевого волокнового электрода щелочного аккумулятора

Изобретение относится к электротехнической промышленности и может быть использовано при производстве щелочных аккумуляторов с оксидно-никелевыми электродами. Изготовление активной массы для оксидно-никелевого волокнового электрода щелочного аккумулятора осуществляется путем нанесения на волокновую основу электрода методом намазки пасты. Пасту получают смешением полимерного водорастворимого связующего натрий-карбоксиметилцеллюлозы, раствора сульфата кобальта (активирующей добавки) температурой 45-55°С и концентрацией 140-145 г/л, наполнителя (мелкодисперсного порошка гидроксида никеля) в соотношении 9:1 никеля к кобальту. Пасту перетирают до гомогенного состояния в дисольвере с зазором между фрезой и корпусом дежи, равным 300-400 мм. Данное изобретение позволяет повысить циклические, ресурсные и удельные емкостные характеристики волокновых оксидно-никелевых электродов никель-кадмиевых аккумуляторов.

 

Изобретение относится к электротехнической промышленности и может быть использовано при производстве щелочных аккумуляторов с оксидно-никелевыми электродами на волокновой основе.

В настоящее время известно множество различных типов никель-кадмиевых аккумуляторов, отличающихся друг от друга способом изготовления электродных основ. В этом плане перспективными являются источники тока с волокновыми электродами. Обладая высокой энергоемкостью и повышенным ресурсом (до 5000 циклов при 60% глубине разряда), аккумуляторы с такими электродами не требуют особого ухода, безотказны и работоспособны практически в любых климатических условиях. Высокая пористость волокновых основ (85-95%) позволяет уменьшить, при равной емкости, объем аккумулятора примерно на 20%, а массу примерно на 25% по сравнению с традиционными аккумуляторами, где используются ламельные или спеченные электроды. Один кубический сантиметр объема электрода с волокновой основой содержит около 300 метров проводящего волокна, что обеспечивает хороший токосъем и позволяет отказаться от добавки графита. Использование волокновых основ позволяет значительно сократить потребление металлического никеля на изготовление оксидно-никелевых электродов. Кроме того, существенно снижается потребление воды и электроэнергии. Применение пастированной технологии заполнения волокновых электродов активной массой также дает возможность уменьшить концентрацию соединений никеля в промышленных стоках и время, отведенное на выполнение технологического цикла изготовления оксидно-никелевых волокновых электродов.

Известен способ изготовления электрода на основе гидроксида никеля, легированного кобальтом [1]. Способ заключается в том, что в высокопористую металлическую основу из, например, нетканого материала вводят активное вещество на основе гидроксида никеля с определенным содержанием кобальта. Активное вещество заполняет часть пор металлической основы, при этом кобальт образует гетерогенную дисперсную среду внутри активного вещества, что обуславливает повышенную емкость электрода.

Недостатком способа является то, что активная масса электрода работает не в полном объеме, поскольку кобальт в ней распределен в виде отдельных частиц, что не обеспечивает необходимую проводимость.

Известен способ создания материала для электродов гальванических элементов с повышенной электропроводностью [2]. Способ заключается в получении тонких металлических частиц при термическом разложении паров карбонилов металлов с последующим нагревом полученного материала до 500°С в течение 5 часов, его измельчением и введением в активный материал электрода.

Недостатком этого способа является то, что полученный из карбонилов материал вводят в активную массу электродов в виде порошка, что не обеспечивает необходимую проводимость, а также включает в себя несколько дополнительных операций по получению электропроводящей добавки, что в целом усложняет технологию получения активной массы.

Наиболее близким техническим решением к предлагаемому и потому принятым за прототип является способ изготовления активной массы щелочных аккумуляторов путем смешения порошков активной массы и легколетучего металлоорганического соединения с последующим его термическим разложением [3].

Недостатком этого способа является то, что сложная технология изготовления активной массы по указанному способу, высокая трудоемкость и энергозатраты для разложения летучего металлоорганического соединения приводят к возрастанию конечной стоимости оксидно-никелевого электрода для щелочного аккумулятора.

Технической задачей изобретения является разработка экономически эффективного способа изготовления активной массы для оксидно-никелевого волокнового электрода щелочного аккумулятора с повышенными циклическими, ресурсными и удельными емкостными характеристиками.

Указанный технический результат достигается способом изготовления активной массы для оксидно-никелевого волокнового электрода щелочного аккумулятора путем смешения полимерного водорастворимого связующего натрий-карбоксиметилцеллюлозы (NaКМЦ), водного раствора сульфата кобальта температурой 45-55°С, концентрацией 140-145 г/л и наполнителя (мелкодисперсного порошка гидроксида никеля) в соотношении 9:1 никеля к кобальту, затем полученная паста перетирается до гомогенного состояния в дисольвере с зазором между фрезой и корпусом дежи, равным 300-400 мм.

Предложенный способ изготовления активной пасты для оксидно-никелевого волокнового электрода щелочного аккумулятора заключается в следующем. В необходимый объем дистиллированной воды или конденсата температурой 40-45°С небольшими порциями при постоянном перемешивании добавляется необходимое количество NaКМЦ, далее перемешивается до получения однородной гелеобразной массы в течение 3-4 ч и оставляется для полного набухания на 10-12 ч. Затем приготавливается раствор сульфата кобальта, для чего в необходимый объем дистиллированной воды или конденсата температурой 50-60°С добавляется расчетное количество сульфата кобальта для получения концентрации 140-145 г/л и перемешивается до полного растворения кристаллов в течение 2-3 ч. По истечении времени набухания, раствор NaКMЦ перемешивается в течение 3-4 ч, затем раствор сульфата кобальта нагревается до температуры 45-55°С и при постоянном перемешивании небольшими порциями вливается в раствор NaКMЦ. В дальнейшем раствор перемешивается до гомогенного состояния в течение 0,5-1 ч. Затем в соотношении 9:1 к кобальту взвешивается необходимое количество наполнителя (мелкодисперсный порошок гидроксида никеля) и при постоянном перемешивании небольшими порциями добавляется в полученный раствор сульфата кобальта и NaКMЦ. Далее полученная активная паста перемешивается в течение 15-20 мин. После окончания перемешивания активная паста помещается в дисольвер с зазором между фрезой и корпусом дежи, равным 300-400 мм, и перетирается до гомогенного состояния в течение 15-45 мин. После окончания времени перетира активная паста извлекается из дисольвера и используется для изготовления оксидно-никелевых волокновых электродов щелочного аккумулятора методом намазки.

Выбор температуры нагрева и концентрации раствора сульфата кобальта, а также величины зазора между фрезой и корпусом дежи при перетире и соотношение между активирующей добавкой и наполнителем продиктован следующими соображениями.

При температуре нагрева раствора сульфата кобальта ниже 45°С имеет место неполное растворение всех кристаллов сульфата кобальта, что приводит к невозможности его использования, а при температуре нагрева выше 55°С происходит порча совместного раствора сульфата кобальта и NаКМЦ вследствие его сворачиваемости.

Указанная концентрация раствора сульфата кобальта 140-145 г/л является оптимальной для установления соотношения между наполнителем и активирующей добавкой равным 9:1 и обеспечения рационального использования дорогостоящих материалов, увеличения коэффициента использования никеля и срока службы волокнового электрода.

При зазоре между фрезой и корпусом дежи меньше 300 мм происходит быстрая сворачиваемость активной пасты из-за увеличения температуры нагрева при перетире, а при зазоре между фрезой и корпусом дежи больше 400 мм портится активная паста вследствие невозможности перетира ее до гомогенного состояния.

На основании вышеизложенного следует, что заявленное изобретение соответствует критерию "новизна" и подтверждает возможность практической реализации заявленного изобретения с достижением заявленного технического результата.

Использование данного изобретения в промышленности позволяет изготавливать оксидно-никелевые волокновые электроды для никель-кадмиевых аккумуляторов с высокими эксплуатационными характеристиками.

Источники информации

1. Заявка Франции №2602612, МКИ4 Н01М 4/52, 4/32, 1986 г.

2. Патент ФРГ №2327931, кл. Н01М 4/52, 1976 г.

3. Патент России №2174727, заявл. 06.12.1999 г.

Способ изготовления активной массы для оксидно-никелевого волокнового электрода щелочного аккумулятора путем нанесения на волокновую основу электрода методом намазки пасты, полученной смешением полимерного водорастворимого связующего натрий-карбоксиметилцеллюлозы, раствора сульфата кобальта и наполнителя (мелкодисперсного порошка гидроксида никеля), отличающийся тем, что активирующая добавка в соотношении 1:9 кобальта к никелю вводится в пасту из водного раствора сульфата кобальта температурой 45-55°С, концентрацией 140-145 г/л, затем паста перетирается до гомогенного состояния в дисольвере с зазором между фрезой и корпусом дежи, равным 300-400 мм.



 

Похожие патенты:

Изобретение относится к электротехнической промышленности и может быть использовано при производстве катодного активного материала литий-ионных аккумуляторов и батарей на их основе, предназначенных, в частности, для питания электротранспорта, электроинструмента и устройств бесперебойного электропитания в условиях высокоэнергоемких нагрузок.
Изобретение относится к области активных материалов, используемых в качестве катода в литиевых батареях, более конкретно к способам получения катодных материалов, имеющих состав LiNi 1/3Co1/3Mn1/3O2.
Изобретение относится к области электрохимической энергетики, а именно к приготовлению активной массы электрода с наноразмерными частицами NiO на углеродном носителе, используемого в химических источниках тока, в частности в никель-металл-гидридных аккумуляторах, а также в суперконденсаторах.

Изобретение относится к устройству и способу получения соединений в результате выпадения из раствора в осадок твердых веществ. .

Изобретение относится к активному катодному материалу для перезаряжаемых литиевых батарей. .

Изобретение относится к способам получения катализаторов топливных элементов. .
Изобретение относится к прикладной электрохимии и предназначено для совершенствования технологии производства оксидно-никелевого электрода, применяемого в качестве положительного электрода в химических источниках тока и процессах электрохимического синтеза.

Изобретение относится к электротехнической промышленности и может быть использовано при производстве модифицированного катодного активного материала литий-ионных аккумуляторных батарей для питания портативной электроники, электроинструмента, электротранспорта.

Изобретение относится к способу получения электропроводящих поверхностных слоев оксида никеля из никельсодержащего материала. .

Изобретение относится к электротехнической промышленности и может быть использовано для производства катодного материала литий-ионных аккумуляторных батарей для питания портативной электроники, электроинструмента, электротранспорта
Изобретение относится к области электрохимической энергетики, а именно к приготовлению активной массы электрода с наноразмерными частицами NiO на углеродном носителе, используемого в химических источниках тока, в частности в никель-металл-гидридных аккумуляторах, а также в суперконденсаторах. Способ получения композиционного NiO/C материала, содержащего 1-99% NiO и представляющего собой равномерно распределенные по поверхности углеродного носителя агрегаты наночастиц β-NiO, основан на получении наночастиц NiO в результате электрохимического окисления и разрушения никелевых электродов в растворах гидроксидов щелочных металлов под действием асимметричного переменного импульсного тока частотой 50 Гц при различном соотношении плотностей токов анодного и катодного полупериодов, с одновременным осаждением образующихся наночастиц оксида никеля на углеродный носитель, последующем фильтровании полученной суспензии композита, промывке композита дистиллированной водой и его высушиванием при температуре 90°С. Повышение качества получаемого материала за счет отсутствия примесей при одновременном снижении энергозатрат на его получение является техническим результатом предложенного изоретения. 4 пр.

Изобретение раскрывает способ получения углеродного композиционного материала, который включает стадию обеспечения присутствия, по меньшей мере, одного углеродного наноструктурного композиционного материала на поверхности частиц LiFePO4 для получения LiFePO4/углеродного наноструктурного композиционного материала. Углеродный наноструктурный композиционный материал получают синтезированием, по меньшей мере, одного наноструктурного композиционного материала, чтобы образовать углеродный наноструктурный композиционный материал. Повышение эксплуатационных характеристик катодного материала путем увеличения мощности и емкости аккумуляторных батарей является техническим результатом заявленного изобретения. 2 н. и 12 з.п. ф-лы, 4 ил., 3 пр.

Заявленное изобретение относится к области электротехники, а именно к способу изготовления никель-цинковых аккумуляторов с металлокерамическим окисно-никелевым электродом. Предложенный способ изготовления окисно-никелевого электрода для никель-цинкового аккумулятора включает пропитку готового электрода в растворе, содержащем, в г/л: сульфат кобальта 50-75, сульфат кадмия 50-75 г/л, в течение 0,5-1,0 часа, последующую обработку в растворе калиевой щелочи концентрацией 200-300 г/л в течение 0,5-1,0 часа и окончательное формирование электрода в растворе калиевой щелочи концентрацией 1-3 моль/л при зарядной и разрядной плотности тока 2-10 мА/см2. Техническим результатом заявленного изобретения является повышение емкости никель-цинковых аккумуляторов с окисно-никелевым и цинковым электродами на коротких режимах разряда. 1 ил., 1 пр.
Изобретение относится к области электрохимической энергетики, а именно к способу получения высокоемкостного композиционного материала на основе активированного углеродного волокнистого материала и гидроксида никеля, используемого в химических источниках тока, в частности в суперконденсаторах и аккумуляторах. Активированный углеродный материал подвергают анодной поляризации в электрохимической установке с разделением анодной и катодной камерами при габаритной плотности анодного тока 10-150 A/м2 и протоке через анодную камеру раствора, содержащего коллоидные частицы гидроксида никеля с концентрацией 0,005-0,01 M до образования осадка гидроксида никеля, массовая доля которого в композите составляет 22-35%. Повышение удельной емкости электродного материала является техническим результатом изобретения, при этом значение удельной емкости может составлять 370-400 Ф/г, измеренной при скорости развертки потенциала 2 мВ/с. 4 пр.

Изобретение относится к электротехнической промышленности и может быть использовано для производства улучшенного катодного активного материала литий-ионных аккумуляторных батарей. В катодном активном материале производится частичная или полная замена электрохимически неактивной проводящей углеродной добавки на электрохимически активную одновременно проводящую добавку полимера. Предложенный композитный катодный материал состоит из механической смеси феррофосфата лития с углеродным покрытием (C-LiFePO4) (88-99,5 вес.%), углеродной сажи (не более 4 вес.%), проводящего полимера поли-3,4-этилендиокситиофена, допированного полистиролсульфоновой кислотой (от 0,5 до 4 вес.%) и водного связующего (карбоксиметилцеллюлоза) не более 4 вес.%. Указанный качественный и количественный состав композитного катодного материала позволяет на 10-15% повысить удельную емкость катодного материала литий-ионной аккумуляторной батареи в расчете на массу катодного материала, что является техническим результатом изобретения. 1 табл., 5 пр., 9 ил.

Изобретение относится к электротехнической области и может быть использовано в аккумуляторных батареях транспортных и космических систем с улучшенными удельными характеристиками. В качестве начального компонента выбирают наноразмерный порошок аэросила (SiO2) с удельной поверхностью 350-380 м2/г, сушат в вакууме в течение 1-3 часов. На порошок аэросила наносят пленки оксида железа и оксида лития толщиной от 1-3 нм методом молекулярного наслаивания до достижения стехиометрического состава Li2FeSiO4 и проводят диффузионное перемешивание полученного состава Li2FeSiO4 при температуре от 300°C до 500°C в течение 8-15 часов. Изобретение позволяет получать катодный материал на основе Li2FeSiO4, обладающий высокой удельной поверхностью и высокой удельной емкостью, с равномерным распределением химического состава по объему всего порошка и бездефектной кристаллической структурой. 1 табл.

Изобретение относится к композициям для предварительной обработки электродов и может быть использовано в литий-ионных батареях. Предложен катод литий-ионной батареи, имеющий электропроводящую подложку, первый слой, покрывающий по меньшей мере часть электропроводящей подложки, содержащий композицию предварительной обработки, содержащую металл группы IIIB и/или группы IV, и второй слой, покрывающий по меньшей мере часть электропроводящей подложки и первого слоя, причем второй слой содержит композицию покрытия, содержащую литийсодержащее соединение. Также описан способ обработки катода батареи и батарея, включающая такой обработанный катод. Предварительная обработка подложки катода обеспечивает улучшение антикоррозионных свойств электрода и повышает прочность на отслаивание покрытия второго слоя, что является техническим результатом изобретения. 3 н. и 16 з.п. ф-лы, 2 ил., 1 табл., 6 прим.

Изобретение может быть использовано для получения катодных материалов литий-ионных аккумуляторов. Для получения сложного оксида лития и кобальта состава LiCoO2 нагревают исходный раствор, содержащий азотнокислый кобальт, соединение лития и гелирующий агент. В качестве гелирующего агента используют глицин и лимонную кислоту, взятые в соотношении (0,31-0,39):(1,04-1,96) на 1 г LiCoO2. Для приготовления исходного раствора к раствору азотнокислого кобальта, содержащего 50-85 мол. % кобальта от стехиометрии, добавляют глицин и лимонную кислоту. Полученный раствор нагревают до температуры 50-70°C до полного растворения лимонной кислоты и вносят кобальт углекислый основной водный, содержащий 15-50 мол. % кобальта от стехиометрии. Добавляют стехиометрическое количество углекислого лития или гидроксида лития. Затем проводят сушку и отжиг полученного после нагревания исходной смеси порошка. Отжиг осуществляют при температуре 850-950°C в течение 5-10 ч. Изобретение позволяет исключить выделение диоксида азота в окружающую среду, повысить производительность процесса, сократить продолжительность высокотемпературной термообработки, обеспечить монофазность состава сложного оксида. 5 пр.

Изобретение относится к области химических технологий и может быть использовано для получения катодных материалов литий-ионных аккумуляторов. Предлагается способ получения катодного материала состава Li1+xNi1/3Co1/3Mn1/3O2 для литий-ионных аккумуляторов, включающий нагревание исходного раствора солей нитратов соответствующих металлов и гелирующего агента, содержащего глицин, с последующими сушкой и кальцинированием (отжигом) полученного после нагревания исходной смеси порошка, отличающийся тем, что в исходном растворе заменяют по крайней мере один нитрат соответствующего металла на эквивалентное количество карбоната соответствующего металла, а в качестве гелирующего агента используют глицин и лимонную кислоту, взятые в соотношении глицин : лимонная кислота = 0,4÷0,8:1,0÷2,0 на 1 г конечного продукта, при этом литий и карбонат соответствующего металла вводят в исходный раствор после его нагревания до 50-75°C и выдержки до полного растворения компонентов, причем литий вводят в виде карбоната лития или гидроксида лития. Изобретение позволяет повысить надежность и качество катодного материала. 5 пр.
Наверх