Контур отсечки искрового разряда

Изобретение относится к управляемому отсекающему беспроводному соединению для системы испытаний импульсами высокого напряжения, предпочтительно для гарантирования качества силовых трансформаторов. Управляемый контур (1) отсечки искрового разряда состоит из множества последовательно соединенных отдельных искровых промежутков (4, 4а), параллельно с которыми соединена последовательность активных сопротивлений для управления потенциалом, и причем, по меньшей мере, в одном отдельном искровом промежутке (4, 4а) расположен вспомогательный электрод (9, 9а) для внешнего инициирования. В дополнение к активным сопротивлениям, параллельно с отдельными искровыми зазорами (4, 4а) соединены конденсаторы (3, 3а), а контур отсечки содержит дополнительный гасящий блок (20), состоящий из последовательно соединенных компенсирующего сопротивления (21) и компенсирующей индуктивности (22) вместе с искровым промежутком (23), соединенным параллельно с ними, подключенный до или после, по меньшей мере, одного каскада контура (1) отсечки искрового разряда, образуя последовательную цепь, при этом контур отсечки (1) искрового разряда с дополнительным гасящим блоком (20) прикреплен вместе с делителем (32) напряжения к общей несущей раме (30) с одним главным электродом (35) для этих вспомогательных компонентов. Технический результат заключается в уменьшении габаритов устройства. 1 з.п. ф-лы, 4 ил.

 

Область техники

Настоящее изобретение относится к контуру отсечки искрового разряда для системы испытаний импульсами высокого напряжения, предпочтительно с целью гарантирования качества силовых трансформаторов.

Предшествующий уровень техники

Испытание высоким напряжением имеет целью моделирование кратковременных перенапряжений в сети трехфазного переменного тока посредством искусственно создаваемых импульснообразных волн. В таком случае обеспечивается классическое различие между внешними перенапряжениями, которые создаются, например, разрядом молнии, и внутренними перенапряжениями цепей, которые возникают из-за процессов коммутации в сети. Множество явлений перенапряжений в целях испытаний сводят к стандартизированным грозовым и коммутационным перенапряжениям. Для этих тестовых напряжений определяют переменные, которые описывают повышение напряжения, пиковое значение и его снижение в пределах установленных допусков. В случае напряжения отсечки грозового импульса, которое нужно для моделирования воздействия быстрых изменений напряжения, время отсечки добавляется в качестве дополнительной переменной. Требования, формы напряжения и установление его параметров определены стандартом ICE 60060-1. В зависимости от соответствующих выполняемых стандартных испытаний, система для испытаний импульсами высокого напряжения содержит для этой цели генератор импульсов и вспомогательные компоненты, такие как искровой промежуток отсечки, делитель напряжения и средство компенсации выбросов напряжения.

В частности, в последнее время на рынке утвердились схемы умножителей Маркса, также называемые генераторами Маркса. Схемы этого типа разработаны в 1923 г., названы его именем, защищены патентом DE 455933 и состоят из нескольких каскадов схем, причем каждый из каскадов содержит последовательно соединенные импульсную емкость, коммутирующий элемент, в частности коммутирующий искровой промежуток, и сопротивление, соединенное параллельно с импульсной емкостью и коммутирующим элементом, а также сопротивление, соединенное последовательно с ними. В таком случае два последовательных каскада соединяются друг с другом таким образом, что они оказываются соединенными параллельно для зарядки и соединенными последовательно для разрядки.

Импульсные конденсаторы заряжаются посредством зарядного постоянного напряжения. Присутствующие зарядные сопротивления в этой связи не только ограничивают зарядный ток, но и обеспечивают временное последовательное соединение конденсаторов посредством искровых промежутков. Искровые расстояния искровых промежутков выбираются так, что они все же не полностью пробиваются при достижении максимального зарядного тока.

После зарядки всех импульсных конденсаторов до их квазистатического конечного значения напряжения имеет место инициирование самого нижнего искрового промежутка, который при этом пробивается. Теперь в следующем искровом промежутке присутствует удвоенное зарядное напряжение, так что он оказывается действительно инициированным. Независимо от количества включенных каскадов, процесс разрядки проходит на основе сложения зарядных напряжений ранее инициированных каскадов вплоть до последнего каскада.

Таким образом, можно генерировать импульсы напряжения очень малой длительности и одновременно большой амплитуды, которые пригодны, в частности, для испытаний и проверок в технологии высоких напряжений для обеспечения электрической прочности диэлектрика, а также сопротивления помехам при электромагнитной совместимости.

Также известно, например - из документа DE 19639023, что увеличение предельной емкости нагрузки только что описанного генератора Маркса реализуется посредством схемного сложения, при котором во время выброса напряжения на емкости нагрузки, т.е. на испытуемом элементе, достигается снижение напряжения, которое вновь исключается после спада выброса. Таким образом, схемное сложение, именуемое также последовательной компенсацией выбросов напряжения, не устраняет причину выброса, а обеспечивает компенсацию выброса на емкости нагрузки, т.е., в частности, на испытуемом элементе. Средство компенсации выбросов состоит из компенсирующей емкости и, по меньшей мере, одного разрядного сопротивления или разрядного искрового зазора, соединенного параллельно ему, причем средство схемного сложения следует соединять последовательно с испытуемым объектом в схемах умножителя Маркса. В отличие от средства компенсации выбросов, последовательно соединяемого с испытуемым объектом, известна также разработка этого средства в форме, предусматривающей параллельное соединение относительно испытуемого элемента. В отличие от только что описанной формы воплощения, в случае средства компенсации выбросов, выполненного таким образом, компенсирующая емкость и, по меньшей мере, одно разрядное сопротивление или разрядный искровой зазор располагаются последовательно.

Кроме того, необходимо также моделирование нагрузки перенапряжения в периоды работы и исследование электрической прочности диэлектрика высоковольтных компонентов путем воздействия на испытуемые объекты, как уже упоминалось, импульсным напряжением отсечки. Для успешного проведения стандартного испытания этого типа необходимо прерывать прикладываемое напряжение в пределах допуска, составляющего несколько микросекунд желаемого времени, прошедшего с начала волны напряжения. Это реализуется технически посредством отсекающих искровых промежутков, таких, как уже давно известные в данной области техники, например, из документов DD 143130 или DE 1255192.

Помимо этого, в системе для испытаний импульсами высокого напряжения имеется соединение с последним каскадом схемы умножителя Маркса, к которому помимо испытуемого объекта также подключен делитель импульсного напряжения с емкостным гашением, который уменьшает напряжение грозового выброса, генерируемое во время разрядки каскадов, до значений, которые можно обрабатывать путем измерительных и регистрирующих приборов.

Все эти встроенные системные компоненты системы для испытаний импульсами высокого напряжения имеют надлежащий физический размер и должны быть скомпонованы в области испытаний с заранее определенным минимальным взаимным промежутком, зависящим от уровня напряжения. Более того, необходимо придерживаться одинаково определенных, зависящих от напряжения минимальных промежутков между находящимися под напряжением элементами и границей области испытаний. Таким образом, требование к пространству, занимаемому всей системой для испытаний импульсами высокого напряжения, является важным. Кроме того, поскольку фирм-изготовителей трансформаторов много, приходится сдвигать всю систему для испытаний импульсами высокого напряжения, чтобы заменить испытуемый объект. В этом случае генератор Маркса и три дополнительных вспомогательных компонента должны быть выполнены с возможностью перемещения по отдельности через испытательный цех и повторной сборки в виде системы для испытаний импульсами высокого напряжения и ее настройки. Этот процесс отнимает время и неудобен в реализации.

Помимо этого, результатом известной компоновки системы для испытаний импульсами высокого напряжения, состоящей из генератора Маркса и трех последовательных вспомогательных компонентов, являются дополнительные емкостные нагрузки, которыми нельзя пренебречь и которые могут иметь последствием несоблюдение стандарта испытаний.

Краткое изложение существа изобретения

Задача настоящего изобретения состоит в том, чтобы уменьшить обуславливаемый напряжением физический размер вспомогательных компонентов, в частности отсекающего промежутка и средства компенсации выбросов, и тем самым снизить потребность в пространстве всей системы для испытаний импульсами высокого напряжения, тем самым создавая возможность более эффективной работы испытательного цеха. Помимо этого, задача изобретения состоит в том, чтобы уменьшить емкостные нагрузки испытательной цепи по сравнению с системами для испытаний импульсами высокого напряжения, известными из уровня техники.

Эта задача решается с помощью управляемого контура отсечки искрового разряда с признаками согласно первому пункту формулы изобретения. Зависимые пункты формулы изобретения относятся к конкретным предпочтительным вариантам осуществления изобретения.

Общий замысел изобретения в таком случае заключается в объединении функциональных возможностей управляемого контура отсечки искрового разряда и средства компенсации выбросов напряжения в одном вспомогательном компоненте. В соответствии с изобретением управляемый контур отсечки искрового разряда с этой целью продолжен дополнительным гасящим блоком, состоящим из последовательно соединенных гасящего сопротивления и гасящей индуктивности и искрового зазора, соединенного с ними параллельно. Дополнительный гасящий блок в таком случае подключен до или после, по меньшей мере, одного каскада контура отсечки искрового разряда, образуя последовательную цепь, т.е. последовательное электрическое соединение, по меньшей мере, с одним из каскадов контура отсечки искрового разряда. Гасящий блок поглощает энергию колебаний на максимуме напряжения грозового импульса и подает ее снова на спаде этого импульса, вследствие чего уменьшается эффективное колебание на максимуме напряжения грозового импульса. Если по контуру отсечки искрового разряда пробегает дуга, то это приводит к нулевому потенциалу напряжения вдоль столба. Таким образом, встроенные конденсаторы контура отсечки искрового разряда как бы соединяются перемычкой. Помимо этого, потенциал напряжения, который спадает через гасящий блок, тоже сводится к нулю, что получается за счет короткого замыкания, тем самым инициируя искровой зазор, расположенный параллельно гасящему сопротивлению и гасящей емкости, соединенным последовательно. Независимо от соответствующего приложения, используемые компоненты дополнительного гасящего блока являются взаимозаменяемыми и поэтому охватывают большой диапазон параметров стандартов испытаний.

Для отдельных стандартных испытаний возникают следующие функциональные возможности сочетания контура отсечки искрового разряда с дополнительным гасящим блоком.

Дополнительный гасящий блок подсоединен для ударного импульса выброса; контур отсечки искрового разряда в соответствии с изобретением функционирует как средство компенсации выбросов.

Гасящий блок замкнут накоротко при импульсе отсечки грозового выброса и поэтому не работает, так как из-за длительности короткого импульса нет нужды в гашении с помощью средства компенсации выброса. Импульс можно отсечь после истечения заранее определенного периода времени с помощью контура отсечки искрового разряда.

Контур отсечки искрового разряда с дополнительным гасящим блоком можно удалять из испытательной цепи, предназначенной для стандартных испытаний, путем переключения импульсов выброса, поскольку функциональные возможности упомянутого контура оказываются ненужными для испытания этого типа.

В прошлом, в соответствии с известным уровнем техники контур отсечки искрового разряда и средство компенсации выбросов эксплуатировались как отдельные компоненты, и их приходилось располагать на определенном расстоянии друг от друга в области испытаний. Посредством предусматриваемого в соответствии с изобретением функционального объединения контура отсечки искрового разряда и средства компенсации выбросов в один вспомогательный компонент оператор, работающий в области испытаний, впервые получает возможность уменьшить количество требуемых вспомогательных компонентов и тем самым оптимизировать требование к пространству, занимаемому всей областью испытаний. Таким образом, можно эффективнее использовать область испытаний. Кроме того, контур отсечки искрового разряда в соответствии с изобретением, снабженный дополнительным гасящим блоком, имеет в результате меньшую емкостную нагрузку в испытательной цепи, чем отдельные вспомогательные компоненты известных технических решений. Благодаря тому, что оператор установки теперь может получить функционально пристраиваемый вспомогательный компонент и тем самым может обойтись без больших затрат на дополнительные конденсаторы неизбежного, в противном случае отдельного средства компенсации выбросов, так что в связи с устройством, соответствующим изобретению, ожидается существенная экономия производственных затрат.

В соответствии с предпочтительным вариантом осуществления изобретения последовательная цепь гасящего блока, состоящая из гасящего сопротивления и гасящей индуктивности, продолжается дополнительной гасящей емкостью, которая имеет эффект гомогенизации деления напряжений по конденсаторам контура отсечки искрового разряда.

В соответствии с дополнительным предпочтительным вариантом осуществления изобретения контур отсечки искрового разряда, снабженный, в соответствии с изобретением дополнительным гасящим блоком и дополнительным вспомогательным компонентом, в частности делителем напряжения, располагается на общей несущей раме лишь с одним головным электродом для обоих вспомогательных компонентов. Поэтому оказывается возможным физическое сведение воедино, по существу, отдельных вспомогательных компонентов и перемещение их на одной общей несущей раме простым способом в испытательный цех.

Краткое описание чертежей

В дальнейшем изобретение поясняется описанием предпочтительных вариантов воплощения со ссылками на сопроводительные чертежи, на которых:

фиг.1 изображает принципиальную схему контура отсечки искрового разряда, известного из уровня техники;

фиг.2 изображает принципиальную схему гасящего блока в соответствии с изобретением;

фиг.3 изображает предпочтительный вариант осуществления гасящего блока в соответствии с изобретением; и

фиг.4 изображает предпочтительный вариант осуществления контура отсечки искрового разряда с дополнительным гасящим блоком в соответствии с изобретением.

Описание предпочтительных вариантов воплощения изобретения

На фиг.1 показана принципиальная схема управляемого контура отсечки искрового разряда, которая известна из документа DD 143130. Она раскрывает принцип управления контуром отсечки 1 искрового разряда с помощью емкостного делителя 2 напряжения. Вся компоновка расположена в окрестности испытуемого элемента, который здесь подробно не показан, параллельного испытательному генератору высокого напряжения. Испытательное напряжение, подлежащее отсечке, равномерно, в соответствии с емкостями, которые выбраны одинакового размера, распределяется по конденсаторам 3 делителя 2 напряжения и при этом также по каждому отдельному искровому промежутку 4 контура отсечки 1 искрового разряда. Промежуточные потенциалы на отдельных соединениях 5 конденсаторов емкостного делителя 2 напряжения соединены с основным электродом 6 соответствующего отдельного искрового промежутка 4 посредством перемычек 7 для управления потенциалом. Второе соединение с тем же отдельным искровым промежутком 4 осуществляется посредством линии 8 схемы со вспомогательным электродом 9, которая включена в упомянутый основной электрод 6 для инициирования отдельного искрового промежутка 4.

Инициирование контура отсечки 1 искрового разряда заключается в том, что самый нижний отдельный искровой промежуток 4a, ближайший к «земле», обычным образом «зажигают» извне с помощью инициирующего импульса, подаваемого на вспомогательный электрод 9a, так что конденсатор 3a этого первого каскада разряжается посредством отдельного искрового промежутка 4a. Разрядный ток в этом случае течет также через перемычку 7. С одной стороны, это приводит к появлению напряжения самоиндукции в перемычке 7, а с другой стороны - создает в линии 8 схемы, которая проходит на достаточно большом расстоянии, напряжение взаимоиндукции, которое, однако, меньше, чем напряжение в перемычке 7. Поскольку и перемычка 7, и линия 8 схемы имеют общую точку соединения в соединении 5 конденсаторов, разность напряжений приводит к пробою в соответствующем отдельном искровом промежутке между вспомогательным электродом 9 и основным электродом 6, а значит, и к инициированию этого отдельного искрового промежутка 4. Образование дуги через последующие каскады, а значит, и через весь контур 1 отсечки искрового разряда происходит аналогичным образом.

На фиг.2 показан гасящий блок 20, состоящий из последовательно соединенных компенсирующего сопротивления 21 и компенсирующей индуктивности 22 и искрового промежутка 23, который подсоединен параллельно им и который образован двумя противоположными колпаками 24 и 25. Дополнительный гасящий блок 20 в этом случае подсоединен до или после, по меньшей мере, одного каскада контура 1 отсечки искрового разряда, образуя последовательную цепь, т.е. оказывается электрически соединенным последовательно, по меньшей мере, с одним из каскадов контура 1 отсечки искрового разряда. Если гасящий блок 20 расположен на первом каскаде контура 1 отсечки искрового разряда, то «землю» 26, которая в противном случае находилась бы здесь, приходится размещать в дополнительном гасящем блоке 20. Более того, электрические параметры отдельных компонентов можно адаптировать к внешним базовым условиям путем простой замены.

В отличие от фиг.2, гасящий блок 20, изображенный на фиг.3, содержит гасящую емкость 27, которая дополнительно соединена последовательно с гасящим сопротивлением 21 и гасящей индуктивностью 22 и которая дает гомогенизацию деления напряжения по конденсаторам 3 контура 1 отсечки искрового разряда.

На фиг.4 показана предпочтительная форма осуществления изобретения, в которой соответствующий изобретению контур 1 отсечки искрового разряда с дополнительным гасящим блоком 20 расположен вместе с дополнительным вспомогательным компонентом, а именно - делителем 32 напряжения, на общей несущей раме 30 лишь с одним главным электродом 35 для обоих вспомогательных компонентов. Оба вспомогательных компонента изображены на фиг.4 лишь схематически для ясности. В этом случае несущая рама 30 выполнена из рамной конструкции, которая является, например, удлиненной, и поэтому является линейной конструкцией, и снабжена дополнительными поперечно закрепленными плечами. Вспомогательные компоненты прикреплены к этой раме 30 и электрически соединены с ней. Кроме того, верхние концы соответствующих вспомогательных компонентов механически закреплены посредством электропроводных поперечных опор 33 и 34. В свою очередь, с поперечными опорами 33 и 34 соединен главный электрод 35, который может быть выполнен, например, в форме тороида. Таким образом, электропроводные поперечные опоры 33 и 34 решают задачу не только механической фиксации главного электрода 35, но и обеспечения выравнивания потенциалов между вспомогательными компонентами и головным электродом 35. Кроме того, вспомогательные компоненты электрически взаимосвязаны посредством общей точки соединения в зоне электропроводных поперечных опор 33 и 34 и поэтому имеют одинаковый уровень напряжения в этой зоне.

1. Управляемый контур (1) отсечки искрового разряда, состоящий из множества последовательно соединенных отдельных искровых промежутков (4, 4а), параллельно с которыми соединена последовательность активных сопротивлений для управления потенциалом, и причем, по меньшей мере, в одном отдельном искровом промежутке (4, 4а) расположен вспомогательный электрод (9, 9а) для внешнего инициирования, отличающийся тем, что в дополнение к активным сопротивлениям, параллельно с отдельными искровыми зазорами (4, 4а) соединены конденсаторы (3, 3а), а контур отсечки содержит дополнительный гасящий блок (20), состоящий из последовательно соединенных компенсирующего сопротивления (21) и компенсирующей индуктивности (22) вместе с искровым промежутком (23), соединенным параллельно с ними, подключенный до или после, по меньшей мере, одного каскада контура (1) отсечки искрового разряда, образуя последовательную цепь, при этом контур отсечки (1) искрового разряда с дополнительным гасящим блоком (20) прикреплен вместе с делителем (32) напряжения к общей несущей раме (30) с одним главным электродом (35) для этих вспомогательных компонентов.

2. Управляемый контур (1) отсечки искрового разряда по п.1, отличающийся тем, что последовательная цепь гасящего блока (20), состоящего из компенсирующего сопротивления (21) и компенсирующей индуктивности (22), продолжена дополнительной гасящей емкостью (27).



 

Похожие патенты:

Изобретение относится к контрольно-измерительной технике и предназначено для непрерывного контроля изоляции, диагностики и защиты высоковольтных вводов силовых трансформаторов, автотрансформаторов и реакторов.

Изобретение относится к области электроэнергетики, а именно к устройствам, позволяющим проводить диагностику и испытания кабелей с синтетической изоляцией повышенным напряжением без ее разрушения.

Изобретение относится к контрольно-измерительной технике в области электрооборудования высокого напряжения и предназначено для непрерывного контроля изоляции, диагностики и защиты высоковольтных вводов силовых трансформаторов и автотрансформаторов.

Изобретение относится к электроизмерительной технике. .

Изобретение относится к контрольно-измерительной технике и может быть использовано для испытаний электрической прочности изоляции жидких диэлектрических материалов.

Изобретение относится к контрольно-измерительной технике и может быть использовано для испытания изоляции локальных низковольтных электрических систем. .

Изобретение относится к области измерительной техники и может быть использовано для испытания электрических сетей. .

Изобретение относится к электротехнике, в частности к способам диагностики изоляции обмоток электродвигателей. .

Изобретение относится к контрольно-измерительной технике, в частности к устройствам для диагностики изоляции обмоток электродвигателей. .

Изобретение относится к измерительной технике

Изобретение относится к технике электрических испытаний и может быть использовано для контроля качества изоляции проводов. Новым является то, что в датчик для непрерывного контроля изоляции проводов, содержащий корпус, внутри которого расположен проводящий рабочий элемент, дополнительно введены колпак, греющий источник с плавно изменяющейся мощностью, термодатчик, труба кожуха, схема регулирования мощностью греющего источника, стойка с платформой, и подвижная стойка. В качестве рабочего элемента взят галлий. Корпус и колпак датчика выполнены из теплопроводящего материала (меди) в виде перевернутых в вертикальной плоскости на 180° по отношению друг к другу прямоугольных сосудов. По периметру в верхней торцевой части корпуса и в нижней части колпака выполнены одинаковые по конфигурации фланцы. Причем внешние размеры фланцев одинаковы. Внутренний же размер фланца колпака меньше внутреннего размера фланца корпуса. Во фланце корпуса выточена проточка, в которую вставлен уплотнитель. Корпус и колпак идентичны по конфигурации, но объем внутренней полости колпака V1 больше объема V2 внутренней полости корпуса. При этом объем V1 полностью заполнен галлием. Фланцы корпуса и колпака присоединены друг к другу крепежными деталями. В стенках корпуса просверлены сквозные соосные отверстия, вокруг которых с внешней стороны корпуса выполнены проточки, в которые вставлены уплотняющие манжеты. С противоположных внешних сторон корпуса датчика прикреплены две трубчатые оси имеющие фланцы. Фланцы прикреплены крепежными деталями к корпусу. Уплотняющие манжеты находятся между корпусом и фланцами трубчатых осей. Внутренний диаметр трубчатых осей соответствует диаметру просверленных в корпусе отверстий, а наружный диаметр этих осей соответствует отверстиям в стойке с платформой и в подвижной стойке. Одна трубчатая ось входит в отверстие стойки с платформой. Другая трубчатая ось входит в отверстие подвижной стойки. Отверстие в стойке с платформой соосно отверстию в подвижной стойке. Нижний конец подвижной стойки расположен в пазу платформы стойки с платформой, и может перемещаться в продольном направлении по расположенным внутри паза направляющим. К верхней части стойки платформы закреплена труба, выполненная из меди. Внутри трубы по ее центральной оси прикреплен к стойке с платформой патрон, в который вкручен греющий источник с плавно изменяющейся мощностью. К внешней стороне колпака одним из торцов прикреплена труба кожуха, внутренний диаметр которой соответствуют внешнему диаметру трубы, прикрепленной к верхней части стойки с платформой, а оси вращения упомянутых туб совпадают. С противоположной стороны корпуса от трубы кожуха расположено гнездо, в которое вставлен термодатчик, выход которого соединен с входом схемы регулирования мощностью греющего источника, выход которой соединен с входом греющего источника с плавно изменяющейся мощностью. Заявляемый датчик имеет более чем в 3 раза более высокую чувствительность, чем датчик-прототип, и более чем на порядок более высокий срок службы, и, соответственно, надежность.

Изобретение относится к устройству для компонентов высоковольтной импульсной системы испытания, предпочтительно для контроля качества мощных трансформаторов. Сущность: в устройстве для компонентов высоковольтной импульсной системы испытания, содержащей генератор импульсов и вспомогательные компоненты, а именно ограничительный разрядный промежуток (2), делитель (3) напряжения и компенсатор (4) перенапряжений, по меньшей мере два из вспомогательных компонентов установлены на общей основной раме с одним единственным головным электродом (11) для вспомогательных компонентов. Технический результат: сокращение пространственной протяженности и числа гальванических соединений. 5 з.п. ф-лы, 2 ил.

Изобретение относится к контролю высоковольтной изоляции. Сущность: датчик (11) частичных разрядов для устройства (11; 13) оперативного контроля высоковольтной изоляции содержит корпус (15) и находящиеся в корпусе (15) измерительную схему (17) для измерения частичных разрядов в тестируемой высоковольтной системе (3; 5) и конденсатор (19) связи, имеющий один электрод (19В), соединенный с измерительной схемой (17), и другой электрод (19А; 41), соединенный с первым высоковольтным проводником (21; 43), соединяемым с высоковольтной линией (5) тестируемой системы. Датчик дополнительно содержит калибровочную схему (23), находящуюся в корпусе (15) и содержащую калибровочный конденсатор (25), имеющий один электрод (25В), соединенный с калибровочной схемой (23), и другой электрод (25А; 41), соединенный с упомянутым первым высоковольтным проводником (21; 43) или вторым высоковольтным проводником (27), соединяемым с высоковольтной линией (5). Технический результат: возможность калибровки датчика в режиме эксплуатации, отсутствие необходимости изменения высоковольтной геометрии применительно к высоковольтной цепи генерирования энергии. 14 з.п. ф-лы, 8 ил.

Изобретение относится к области электроэнергетики, а именно к компактным установкам (приборам), позволяющим проводить испытания изоляции объектов электротехнического назначения повышенным переменным напряжением 50 Гц и постоянным напряжением, максимальным выходным напряжением до 10 кВ. Установка позволяет расширить функциональные возможности и параметры измеряемых электрических величин, а также повышает эффективность обнаружения мест с дефектами изоляции, уменьшает трудоемкость при серии однотипных испытаний и удобство испытаний при повышении безопасности работы персонала и значительном увеличении точности и достоверности измеряемых параметров. Сущность: установка выполнена в едином корпусе, внутри которого размещены блок питания, оснащенный таймером блок управления, блок измерения, установленный в непосредственной близости от высоковольтного модуля, регулятор напряжения, блок температурный. Высоковольтный модуль выполнен герметичным модулем с двойной изоляцией в виде полого пластмассового корпуса, заполненного жидким диэлектриком, и дополнительно включает высоковольтный выпрямитель, высоковольтные сглаживающие конденсаторы, ограничительный резистор, высоковольтное разрядное устройство и гидравлические разъемы для соединения с жидкостной системой принудительного охлаждения, и снабжен встроенным высоковольтным разъемом для подключения испытуемого объекта. Соединение блока измерений и блока управления происходит по цифровому последовательному интерфейсу через гальваническую развязку. Блок питания соединен только с блоком управления. Вход блока управления соединен с выходом блока измерения, выход блока управления соединен с входом регулятора напряжения и входом питания блока измерения. Вход блока измерения подключен к выходу делителя напряжения высоковольтного блока, выход регулятора напряжения подключен к входу высоковольтного блока, одновременно регулятор напряжения и высоковольтный модуль подключены к блоку температурному, выход которого соединен с входами воздушной системы принудительного охлаждения и жидкостной системы принудительного охлаждения. Выход воздушной системы принудительного охлаждения воздействует на регулятор напряжения и жидкостную систему принудительного охлаждения. Выход жидкостной системы принудительного охлаждения подключен к гидравлическому входу высоковольтного модуля. Установка имеет два токовых входа для заземленной и незаземленной нагрузки. Установка имеет цифровой последовательный канал передачи измеренных оцифрованных значений тока и напряжения в блок управления для их математической обработки. 3 з.п. ф-лы, 1 ил.

Изобретение относится к кабельной технике. Сущность: устройство содержит термошкаф, в котором размещен испытуемый образец в виде стандартной скрутки эмалированного провода, один конец которого и термошкаф заземлены. Источник питания соединен с автоматом защиты, который через счетчик времени наработки соединен с процессорным модулем, который соединен с трансформатором, который заземлен. Высоковольтный вывод трансформатора подсоединен к другому концу испытуемого образца эмалированного провода. Технический результат: упрощение аппаратурной реализации. 1 ил., 1 табл.

Изобретение относится к технике электрических испытаний и может быть использовано для контроля качества изоляции проводов. Заявленный датчик для непрерывного контроля изоляции проводов выполнен в виде двух роликов из нержавеющей стали, имеющих U-образную проточку по образующей, причем ролики помещают в корпус, который выполнен в виде швеллера, между параллельными стенками которого закреплена диэлектрическая основа для размещения элементов датчика, также выполненная в виде швеллера, параллельные стенки указанной основы закреплены крепежными деталями к параллельным стенкам корпуса датчика, а основание упомянутой основы расположено перпендикулярно к основанию корпуса датчика, в датчик дополнительно введены два металлических коромысла, две пружины, два скользящих контакта, два вывода для подсоединения источника питания, две направляющие втулки, диск с равномерно выполненными в нем сквозными радиальными прорезями, одна плоскость которого выполнена в виде цилиндрического стакана, ультрафиолетовый светодиод и ультрафиолетовый фотодиод, причем коромысла выполнены в виде металлических пластин, на одном конце каждой из которых жестко закреплены перпендикулярно плоскости пластины цилиндрические оси под подшипники, на другом конце каждой пластины коромысла выполнены перпендикулярно плоскости коромысел отверстия под оси, которые жестко закреплены на диэлектрической основе для размещения элементов датчика, вращающихся роликов, прижатых с помощью пружин друг к другу образующими поверхностями в точке соприкосновения, лежащей на вертикальной оси симметрии указанных роликов, к боковой поверхности одного из вращающихся роликов соосно прикреплен стакан упомянутого диска с радиальными прорезями, по образующим поверхностям роликов выполнены проточки, лежащие при соприкосновении роликов против друг друга и служащие для фиксации и ограничения движения провода в поперечном направлении. Технический результат заключается в обеспечении большей универсальности за счет расширения функциональных возможностей, большей разрешающей способности, информативности и точности контроля. 6 ил., 1 пр.
Наверх