Устройство для определения оптимального периода контроля и управления техническим состоянием изделия

Изобретение относится к устройству для определения оптимальных сроков контроля и технического обслуживания изделий, а также расчетных значений времени безотказной работы изделия и времени, необходимого для проведения работ по техническому обслуживанию. Техническим результатом является повышение точности и расширение области применения устройства. Устройство содержит блок памяти, шесть вентилей, пять сумматоров, мультивибратор, два триггера, два накапливающих сумматора, схему ИЛИ, четыре блока нелинейностей, компаратор, четыре блока умножения, два вычитателя, четыре элемента задержки, четыре элемента памяти, два интегратора и делитель. 1 ил.

 

Изобретение относится к вычислительной технике, в частности к устройствам контроля. Оно может использоваться в опытно-конструкторских работах и практике эксплуатации для определении оптимальной периодичности технического обслуживания изделий и соответствующих значений эксплуатационных характеристик.

Существуют устройства [3, 4, 5, 6], позволяющие определять оптимальные периоды контроля и управления техническим состоянием изделий. Область их применения ограничена изделиями, постоянно функционирующими в рабочем режиме. Использование этих устройств применительно к изделиям с переменным режимом работы не обеспечивает необходимой точности определения значений искомых величин.

Наиболее близким по технической сущности к заявляемому изобретению является устройство [7], содержащее сумматоры, блок умножения, блок нелинейности, элементы памяти, интегратор, таймеры, блок деления, элементы задержки, триггеры, элемент ИЛИ, компараторы и ключи. Этому устройству свойственны те же недостатки, что и аналогам [3, 4, 5, 6].

Каждое изделие непрерывно расходует свой надежностный потенциал, причем скорость расходования зависит от режима использования изделия [1]. Изменение режима проявляется в изменении интенсивности отказов. Это необходимо учитывать при определении оптимальных сроков технического обслуживания изделий.

Целью заявляемого технического решения является повышение точности и расширение области применения устройства. Цель достигается путем реализации математической модели, отражающей различие значений интенсивности отказов соответственно изменению режима функционирования изделия.

Процесс применения значительного числа различных типов изделий имеет циклический характер. Каждый цикл может включать в себя работу изделия в номинальном режиме, в облегченном режиме, а также режим отдыха. Диаграмму процесса эксплуатации изделия представим в следующем виде:

Здесь τ - длительность цикла применения изделия (например, одни сутки); t1 - длительность применения изделия в номинальном режиме с коэффициентом нагрузки kн, равным единице. При этом интенсивность отказов изделия имеет значение λ1.

На интервале t2=τ-t1 различные изделия, в зависимости от технологии их применения и реальной нагрузки, могут находиться в одном из следующих режимов:

а) облегченный режим в связи с уменьшением нагрузки (например, средства энергосистем непрерывного использования);

б) отдых после применения (например, технические средства предприятий, работающих в одну или две смены; средства радио- и телевизионных студий; бортовая аппаратура транспортных средств и многое другое). В связи с этим на интервале времени t2 интенсивность отказов λ2 будет иметь разные значения λ21kн соответственно изменению коэффициента kн нагрузки. Отметим, что согласно [2] в случае облегченного режима работы изделия kн<1, а в режиме отдыха согласно [1] 0<kн<<1.

Для поддержания изделия в работоспособном состоянии периодически проводится его техническое обслуживание и затрачивается время τобс. При этом выполняется углубленный контроль состояния в течение времени τk1, проведение регламентных работ и восстановление работоспособности изделия в случае обнаружения отказа, на что расходуется время τВ, а по окончании этих работ проводится контрольная проверка работоспособности изделия в течение времени τk2. Отметим, что контроль технического состояния выполняется в условиях номинального режима работы изделия. Поэтому на интервалах времени τk1 и τk2 интенсивность отказов будет равной λ1. Для проведения ремонтно-восстановительных работ изделие переводится в режим отдыха, что соответствует интенсивности отказов λ2. В связи с этим общая продолжительность технического обслуживания выражается так:

или

где Р(Т), , Р(τВ) - вероятность безотказной работы изделия на соответствующем интервале времени.

Длительность периода обслуживания T включает в себя множество циклов применения длительностью τ каждый, то есть

где

Продолжительность Тц цикла обслуживания изделия составляет

Вероятность безотказной работы изделия на интервале времени T выражается так:

Для многих изделий справедливо утверждение, что в них преобладают внезапные отказы и применим экспоненциальный закон распределения времени возникновения отказов. При этом имеет место следующее:

Время работоспособного состояния изделия Tф на интервале времени Т определяется по формуле

Важной характеристикой качества функционирования изделия является коэффициент готовности. Его значение выражается следующим соотношением:

Организация эксплуатации предусматривает определение таких сроков технического обслуживания, которые обеспечивают требуемое качество функционирования изделий, выраженное заданным значением коэффициента готовности. В связи с этим задача определения оптимального периода технического обслуживания изделия выражается в следующем виде:

Предложенная математическая модель может быть реализована аппаратурно с помощью устройства, схема которого показана на рис.1.

Устройство содержит: блок памяти 1, вентили 2, 4, 27, 38, 39, 40, сумматоры 3, 8, 9, 29, 31, мультивибратор 5, триггеры 6, 17, накапливающие сумматоры 7, 10, схему ИЛИ 11, блоки нелинейностей 12, 13, 18, 20, компаратор 14, блоки умножения 15, 16, 22, 24, вычитатели 19, 21, элементы задержки 23, 25, 33, 36, элементы памяти 26, 34, 35, 37, интеграторы 28, 30, делитель 32.

Перед началом работы устройства исходные данные λ1, t1, λ2, τk1, τВ, τk2, τ, вводятся в блок памяти 1 через его входы с 1 по 8 соответственно, являющиеся входами устройства. Процесс решения задачи (12) имеет итерационный характер. В первом цикле работы (i=1) устройства Т=τ, Т11, а в каждом последующем цикле происходит увеличение параметров Т, Т1, T2 согласно (2) и (3). Соответственно этому изменяются значения величин Р(Т), Tф(T), КГ(T), τобс(T).

Устройство работает следующим образом.

По сигналу «Пуск», поступающему с девятого входа устройства, первый триггер 6 устанавливается в единичное состояние, а второй триггер 17 - в нулевое состояние, закрывая выходные вентили 27, 38, 39, 40. Кроме того, сигнал «Пуск», пройдя через схему ИЛИ 11, поступает на вход мультивибратора 5. Единичный потенциал первого триггера 6 передается на девятый вход блока памяти 1, обеспечивая поступление на его выходы (считывание) исходных данных. По выходному (одиночному) сигналу мультивибратора 5 открываются первый 2 и второй 4 вентили. Это обеспечивает однократное поступление значения параметра t1 со второго выхода блока памяти 1 в первый накапливающий сумматор 7, а значение параметра τ - с пятого выхода блока памяти 1 во второй накапливающий сумматор 10. Одиночный сигнал мультивибратора 5 поступает также на управляющие входы первого 7 и второго 10 накапливающих сумматоров, обеспечивая реализацию ими процесса накопления и передачи результирующих данных в сопряженные с ними элементы схемы устройства.

Рассмотрим первый цикл вычисления критериальной функции КГ(Т).

Выходной сигнал первого накапливающего сумматора 7 передается на вторые входы третьего блока нелинейности 18, первого интегратора 28 и первого вычитателя 19. Выходной сигнал второго накапливающего сумматора 10 поступает на вход первого элемента задержки 23 и на первый вход первого вычитателя 19. В вычитателе 19 реализуется разность t2=τ-t1 и передается на вторые входы четвертого блока нелинейности 20 и второго интегратора 30. С первого выхода блока памяти 1 на первые входы второго 13 и третьего 18 блоков нелинейностей передается значение λ1 интенсивности отказов, а с третьего выхода блока памяти 1 на первый вход четвертого блока нелинейностей 20 и на второй вход первого блока нелинейности 12 поступает значение интенсивности отказов λ2. В третьем блоке нелинейности 18 формируется в соответствии с (6) сигнал P1(t1) и передается на первые входы четвертого блока умножения 24 и первого интегратора 28. В четвертом блоке нелинейности 20 в соответствии с (7) формируется сигнал P2(t2) и передается на первый вход второго интегратора 30 и на второй вход четвертого блока умножения 24. В первом интеграторе 28 вычисляется время работоспособного состояния изделия tф1(t1), а во втором интеграторе 30 - время работоспособного состояния tф2(t2). Выходные сигналы интеграторов 28 и 30 передаются соответственно на первый и второй входы четвертого сумматора 29. Суммарное значение tф(τ), полученное в соответствии с (10), с выхода четвертого сумматора 29 передается на вход четвертого элемента задержки 36, а также на вторые входы пятого сумматора 31 и блока деления 32.

Одновременно с изложенным происходит вычисление величины τобс. При этом с четвертого выхода блока памяти 1 на первый вход первого сумматора 3 передается значение величины τk1. С пятого выхода блока памяти 1 на первые входы первого блока нелинейности 12, второго 8 и третьего 9 сумматоров поступает значение величины τВ. С шестого выхода блока памяти 1 на вторые входы первого 3 и третьего 9 сумматоров передается значение величины τk2. Выходной сигнал (τk1k2) первого сумматора 3 действует на вторых входах второго сумматора 8 и второго блока нелинейности 13. В блоках нелинейностей 12 и 13 формируются значения величин Р(τВ) и Р(τk1k2) соответственно. Выходные сигналы этих блоков нелинейностей передаются на входы первого блока умножения 15. Результат перемножения Р(τВ)Р(τk1k2) из блока 15 поступает на второй вход второго блока умножения 16. В третьем сумматоре 9 реализуется сложение значений величин τВ и τk2. Полученный результат передается на первый вход второго блока умножения 16. Выходной сигнал блока 16 поступает на первый вход третьего блока умножения 22, на второй вход которого от четвертого блока умножения 24 приходит сигнал, соответствующий величине Р(τ). В третьем блоке умножения 22 реализуется произведение его входных величин (τВk2)Р(τ)Р(τk1k2)Р(τВ) и передается на второй вход второго вычитателя 21. Выходной сигнал, соответствующий сумме (τk1Вk2), с выхода второго сумматора 8 поступает во второй вычитатель 21 через его первый вход. В вычитателе 21 формируется величина τобс, отображаемая соотношением (1), и передается на первый вход пятого сумматора 31 и во второй элемент задержки 25. Сигнал, соответствующий сумме (τфобс), из пятого сумматора 31 передается в блок деления 32. Результат деления, соответствующий вычисленному согласно (11) значению KГ коэффициента готовности, с выхода блока деления 32 поступает на вход третьего элемента задержки 33 и на второй вход компаратора 14, на первый вход которого с восьмого выхода блока памяти 1 поступает сигнал, соответствующий заданному значению коэффициента готовности.

Для многих типов изделий справедливо утверждение, что в первом цикле работы устройства (T=τ) вычисленное значение коэффициента готовности будет больше заданного. Поэтому в результате их сравнения в компараторе 14 на его первом выходе появится управляющий сигнал, который, пройдя через схему ИЛИ 11, поступит на вход мультивибратора 5. Одиночный выходной импульс мультивибратора 5 откроет первый 2 и второй 4 вентили. В результате этого значения выходных величин первого 7 и второго 10 накапливающих сумматоров увеличится на t1 и τ соответственно. Далее процесс вычисления коэффициента готовности KГ и сравнение его с повторится. Число циклов работы устройства будет увеличиваться пока будет сохраняться неравенство . В каждом очередном цикле содержание накапливающих сумматоров 7 и 10 будет увеличиваться на t1 и τ соответственно и сохраняться в этих сумматорах до начала очередного цикла вычислений. Это увеличение сопровождается изменением значений всех других расчетных величин.

Вычисленные значения периода обслуживания Т, коэффициента готовности КГ(Т), времени безотказной работы изделия Tф(T) и продолжительности технического обслуживания τобс(Т), задержанные элементами задержки 23, 33, 36, 25 на время одного цикла вычислений, передаются, соответственно, в третий 35, второй 34, четвертый 37 и первый 26 элементы памяти. После каждого очередного цикла работы устройства значения данных этих элементов памяти обновляются.

Как только в компараторе 14 окажется, что , управляющий сигнал появится на его втором выходе и поступит на вторые входы первого 6 и второго 17 триггеров. При этом первый триггер 6 переключится в нулевое состояние и его выходной потенциал, поступив на девятый вход блока памяти 1, закроет все выходы этого блока. Второй триггер 17 переключится в единичное состояние, его выходной потенциал откроет вентили 27, 38, 39, 40, а также поступит на управляющие входы элементов памяти 26, 34, 35, 37. Вычисленное согласно (2) значение T периода обслуживания, соответствующее условию (12) с выхода третьего элемента памяти 35 через открытый шестой вентиль 40 поступит на четвертый выход устройства. Значение коэффициента готовности КГ) с выхода второго элемента памяти 34 через открытый пятый вентиль 39 поступит на третий выход устройства. Вычисленное согласно (10) время работоспособного состояния Tф(T) изделия с выхода четвертого элемента памяти 37 через четвертый вентиль 38 поступит на второй выход устройства. Выходной сигнал первого элемента памяти, соответствующий вычисленному согласно (1) значению величины τобс(T) через третий вентиль 27 поступит на первый выход устройства.

На этом работа устройства заканчивается.

Положительный эффект, который может быть получен от использования предлагаемого технического решения, состоит в получении расчетных значений периода и продолжительности технического обслуживания, времени безотказной работы и коэффициента готовности изделия, вычисленных с учетом переменного режима использования изделия и соответствующих изменений интенсивности его отказов. Вычисленные значения выходных величин позволяют обоснованно планировать применение и техническую эксплуатацию изделия.

Схемы функциональных элементов устройства представлены в [8]. Кроме того, схемы и порядок работы накапливающих сумматоров показаны в патентах РФ №2233481 и №2233482, 2004 г., G07С 3/08.

При составлении описания и формулировании изобретения использованы следующие источники информации.

1. Седякин Н.М. Об одном физическом принципе теории надежности. - Известия АН СССР, ОТН, Техническая кибернетика, 1996, №3.

2. Половко A.M. Основы теории надежности. - М.: Наука, 1964.

3. Воробьев Г.Н., Гришин В.Д., Доможиров В.Т., Тимофеев А.Н. AC SU №1767510. МПК G07C 5/08, 1992.

4. Гришин В.Д., Павлов А.Н., Михайлов Е.П. Патент RU №2343544, МПК G07C 3/08, 2009.

5. Гришин В.Д., Кудряшов А.Н., Тимошенко Д.В. Патент RU №2347272, МПК G07C 3/08, 2009.

6. Гришин В.Д., Мышинский Д.А., Таганов И.Ю. Патент RU №2361217, МПК G07C 3/08, 2009.

7. Гришин В.Д., Шульгин А.Е., Петров А.А. Патент RU №2361276, МПК G07C 3/08, 2009.

8. Тетельбаум И.М., Шрейдер Ю.Р. 400 схем для АВМ. - М.: Энергия, 1978.

Устройство для определения оптимального периода контроля и управления техническим состоянием изделия, содержащее первый вентиль, первый сумматор, выход которого соединен со вторым входом второго сумматора, первый триггер, схему ИЛИ, первый вход которой подключен к девятому входу устройства, первый блок нелинейности, выход которого связан с первым входом первого блока умножения, первый интегратор, третий сумматор, первый вычитатель, первый вход которого через первый элемент задержки соединен с информационным входом третьего элемента памяти, выход которого подключен к информационному входу шестого вентиля, выход которого является четвертым выходом устройства, третьим выходом которого является выход пятого вентиля, информационный вход которого соединен с выходом второго элемента памяти, информационный вход которого через третий элемент задержки подключен ко второму входу компаратора и к выходу блока деления, второй вход которого соединен с выходом четвертого сумматора и с входом четвертого элемента задержки, выход которого подключен к информационному входу четвертого элемента памяти, выход которого соединен с информационным входом четвертого вентиля, выход которого является вторым выходом устройства, первым выходом которого является выход третьего вентиля, информационный вход которого соединен с выходом первого элемента памяти, информационный вход которого подключен к выходу второго элемента задержки, а управляющий вход вместе с управляющими входами второго, третьего и четвертого элементов памяти, третьего, четвертого, пятого и шестого вентилей соединен с выходом второго триггера, второй вход которого подключен ко второму выходу компаратора, отличающееся тем, что в него введены блок памяти, входы которого с первого по восьмой являются соответствующими входами устройства, девятый вход которого соединен с первыми входами первого триггера и второго триггера, второй вход которого связан со вторым входом первого триггера, выход которого подключен к девятому входу блока памяти, восьмой выход которого соединен с первым входом компаратора, первый выход которого подключен ко второму входу схемы ИЛИ, выход которой соединен с входом мультивибратора, выход которого связан с управляющими входами первого и второго вентилей, первого накапливающего сумматора и второго накапливающего сумматора, выход которого соединен с первым входом первого вычитателя, а информационный вход подключен к выходу второго вентиля, информационный вход которого соединен с седьмым выходом блока памяти, шестой выход которого связан со вторыми входами третьего сумматора и первого сумматора, первый вход которого соединен с четвертым выходом блока памяти, а выход подключен ко второму входу второго блока нелинейности, выход которого соединен со вторым входом первого блока умножения, выход которого подключен ко второму входу второго блока умножения, первый вход которого соединен с выходом третьего сумматора, а выход - с первым входом третьего блока умножения, второй вход которого связан с выходом четвертого блока умножения, а выход подключен ко второму входу второго вычитателя, первый вход которого соединен с выходом второго сумматора, а выход связан с входом второго элемента задержки и с первым входом пятого сумматора, выход которого подключен к первому входу блока деления, а второй вход соединен с выходом четвертого сумматора, первый вход которого связан с выходом первого интегратора, а второй вход - с выходом второго интегратора, второй вход которого соединен с выходом первого вычитателя и со вторым входом четвертого блока нелинейности, а первый вход подключен ко второму входу четвертого блока умножения и к выходу четвертого блока нелинейности, первый вход которого соединен с третьим выходом блока памяти и со вторым входом первого блока нелинейности, первый вход которого связан с первыми входами второго и третьего сумматоров и с пятым выходом блока памяти, второй выход которого подключен к информационному входу первого вентиля, выход которого соединен с информационным входом первого накапливающего сумматора, выход которого подключен ко вторым входам первого вычитателя, первого интегратора и третьего блока нелинейности, выход которого соединен с первыми входами четвертого блока умножения и первого интегратора, а первый вход вместе с первым входом второго блока нелинейности подключен к первому выходу блока памяти.



 

Похожие патенты:

Изобретение относится к области машиностроения, к авиационно-космической технике и может быть использовано при создании различного класса изделий. .

Изобретение относится к вычислительной технике, в частности к устройствам контроля, и может использоваться в научных исследованиях и практике эксплуатации для определения оптимальных сроков технического обслуживания изделий и соответствующих значений коэффициента готовности и времени безотказной работы изделия.

Изобретение относится к вычислительной технике, в частности к устройствам контроля, и может быть использовано в опытно-конструкторских работах и практике эксплуатации, где требуется определять оптимальную периодичность контроля и технического обслуживания изделий и соответствующие этой периодичности значения эксплуатационных характеристик.

Изобретение относится к вычислительной технике, в частности к устройствам контроля. .

Изобретение относится к вычислительной технике, а именно к устройствам контроля, и может быть использовано в опытно-конструкторских работах и практике эксплуатации, где требуется определять оптимальную периодичность технического обслуживания изделий и соответствующие значения показателей качества их функционирования.

Изобретение относится к области эксплуатации сложных технических систем и может быть использовано для определения периода контроля и технического обслуживания. .

Изобретение относится к вычислительной технике, в частности к устройствам контроля, и может быть использовано в научных исследованиях и практике эксплуатации технических систем для определения оптимальных программ обслуживания и показателей качества функционирования технических средств этих систем.

Изобретение относится к вычислительной технике, в частности к устройствам контроля, и может быть использовано в научных исследованиях и технике, где требуется определять оптимальную программу обслуживания технических средств системы.

Изобретение относится к системе и способу для мониторинга работы подсистемы или рабочей характеристики одной или нескольких функций в лесохозяйственной машине. .

Изобретение относится к устройствам контроля и может использоваться для определения оптимальных значений параметров надежности изделий и вычисления соответствующих значений времени безотказной работы и продолжительности процесса обслуживания изделия. Техническим результатом является расширение функциональных и информативных возможностей устройства за счет вычисления и предоставления в качестве выходных данных значений времени работоспособного состояния и времени технического обслуживания на интервале одного цикла обслуживания изделия. Устройство содержит генератор ступенчатого напряжения 1 и две совокупности функциональных блоков, обеспечивающих решение задачи. Первая совокупность блоков включает первый блок нелинейности 2, первый интегратор 3, первый делитель 4, первый усилитель 5, первый 6 и второй 7 сумматоры и первый блок умножения 8. Вторая совокупность блоков включает второй усилитель 9, третий 10 и четвертый 11 сумматоры, второй блок умножения 12, второй блок нелинейности 13, второй интегратор 14 и второй делитель 15. Устройство также содержит пятый 23 и шестой 24 сумматоры, блок сравнения 16, семь элементов задержки (17, 18, 19, 25, 26, 27, 28) и семь ключей (20, 21, 22, 29, 30, 31, 32). 1 ил.

Изобретение относится к вычислительной технике, в частности к устройствам контроля, и может быть использовано в опытно-конструкторских работах и практике эксплуатации, где требуется определять оптимальную периодичность технического обслуживания изделий и соответствующие показатели качества их функционирования. Техническим результатом является расширение функциональных возможностей устройства путем определения и выдачи в качестве выходных данных значений коэффициента и времени работоспособного состояния изделия постоянного применения при оптимальном периоде его технического обслуживания, а также интервала времени, в течение которого оперативная готовность изделия к применению будет не менее заданной. Устройство содержит блок памяти, два сумматора, два блока перемножения, девять вентилей, блок нелинейности, шесть элементов задержки, элемент ИЛИ, два триггера, интегратор, два таймера, блок деления, два компаратора и элемент памяти. 1 ил.

Изобретение относится к вычислительной технике, в частности к устройствам контроля. Изобретение может использоваться в научных исследованиях и практике эксплуатации для определения оптимальных сроков технического обслуживания изделий циклического применения и соответствующих значений коэффициента готовности и времени безотказной работы изделия, а также допустимого интервала времени, после проведения технического обслуживания, в котором коэффициент оперативной готовности изделия к применению будет не менее заданного. Техническим результатом является расширение функциональных возможностей устройства путем определения коэффициента оперативной готовности изделия и интервала времени после проведения планового технического обслуживания, в котором оперативная готовность будет не менее требуемой. Устройство содержит блок памяти, тринадцать вентилей, мультивибратор, три триггера, два накапливающих сумматора, схему ИЛИ, пять элементов задержки, два блока нелинейности, три блока умножения, два компаратора, элемент памяти, два вычитателя, два интегратора, два сумматора, блок деления, поляризованное реле. 2 ил.

Изобретение относится к вычислительной технике, в частности к устройствам контроля, и может быть использовано в опытно-конструкторских работах и практике эксплуатации, где требуется определять оптимальную периодичность технического обслуживания, вычисленную с учетом динамики расходования изделием его надежностного потенциала, и соответствующие этой периодичности значений эксплуатационных характеристик. Технический результат заключается в повышении точности определения значений искомых величин путем реализации математической модели, позволяющей учитывать зависимость функции отказов от времени и от режима использования изделия. Технический результат достигается за счет устройства, которое содержит пять блоков деления, четыре блока нелинейностей, девять блоков умножения, два интегратора, два вычитателя, датчик времени (генератор ступенчатого напряжения), пять сумматоров, мультивибратор, работающий в ждущем режиме, пять элементов задержки, схему ИЛИ, компаратор, триггер, четыре элемента памяти, четыре вентиля. 2 ил.

Изобретение относится к устройствам контроля, в которых требуется определять оптимальные периоды контроля и технического обслуживания изделий, а также значения эксплуатационных характеристик изделия. Техническим результатом является повышение точности определения значений выходных параметров изделия. В устройстве обеспечивается для каждого очередного цикла работы в соответствии с возрастанием параметра времени контроль времени работоспособного состояния изделия, определение оптимального значения периода обслуживания, а также возможное минимальное значение коэффициента простоя для соответствия оптимальному периоду обслуживания. 1 ил.

Изобретение может быть использовано при создании, испытаниях и эксплуатации планируемых к применению из режима поддержания готовности (РПГ) или из режима ожидания (РО) радиоэлектронных изделий (РЭИ) для определения оптимальных периодов их технического обслуживания (ТО). Техническим результатом является повышение точности определения оптимальной периодичности ТО путем учета в цикле ТО заключительной операции проведения в РПГ испытаний изделия на функционирование после плановой предупредительной профилактики (ППП) в процессе периодического технического обслуживания (ПТО) или аварийно-профилактического ремонта (АПР) перед переводом изделия в режим ожидания. Он достигается тем, что предложено устройство для определения оптимального периода технического обслуживания изделия, которое содержит генератор импульсов 1, счетчик времени 2, регистры для записи исходных данных 3-6, блок элементов И 7, блок умножения 8, устройство расчета, хранения и выдачи вероятности безотказной работы изделия 9, блок элементов ИЛИ 10, блоки умножения 11, 12, накапливающий сумматор 13, сумматор 14, блок деления 15, пятый и шестой регистры 16, 17, второй и третий блоки элементов И 18, 19, блок сравнения 20, элементы задержки 21-26. 3 ил.

Изобретение относится к области машиностроения и авиационно-космической технике и может быть использовано при создании различного класса изделий. Технический результат - повышение надежности изделия и его составных частей. Способ повышения надежности изделия и его составных частей (СЧ), заключающийся в определении вероятности безотказной работы (ВБР) частоты отказов ν, ресурса Тр, устранении неисправности, выборе режимов функционирования и совершенствования конструктивных, структурно-функциональных решений изделия и его СЧ, определении структурного состава, обеспечивающего требуемую функцию изделия, и установлении взаимосвязи между количеством n составных частей, их изменением Δn и вероятностью безотказной работы Рн по соотношению N=no(1-Δν/νo)=noPн. 5 з.п. ф-лы, 4 табл.

Группа изобретений относится к зарядным станциям для электрических транспортных средств. Способ для управления зарядными станциями (2, 8) для электрических транспортных средств (A, B) заключается в том, что используют обмен сообщениями между устройством управления зарядными станциями и устройствами, которые соответственно связаны с электрическим транспортным средством или его водителем. Когда устройство управления зарядными станциями принимает запрос зарядки, который не может быть удовлетворен в текущей ситуации занятости, устройство управления зарядными станциями берет текущее состояние заряда каждого занимающего электрического транспортного средства в качестве основы для отправки сообщения. Устройство управления отправляет сообщение устройству, связанному с занимающим электрическим транспортным средством (A), которое содержит запрос освободить зарядную станцию (2, 8) сейчас или к конкретному времени. Устройство управления отправляет сообщение устройству, с которого был принят запрос зарядки, которое содержит информацию касательно того, станет ли зарядная станция свободной или когда, вероятно, зарядная станция станет свободной. Технический результат заключается в повышении коэффициента использования зарядных станций. 2 н. и 7 з.п. ф-лы, 12 ил.
Наверх