Сырьевая смесь для изготовления теплоизоляционного материала

Изобретение относится к промышленности строительных теплоизоляционных материалов. Сырьевая смесь для изготовления теплоизоляционного материала содержит, мас.%: каолиновое волокно 48,0-51,0; растворимое стекло 6,0-8,0; асбест 5,0-7,0; молотое кварцевое стекло 14,0-18; каолин 15,0-18,0; глинозем 4,0-6,0. Технический результат - повышение термостойкости теплоизоляционного материала. 1 табл.,1 ил.

 

Изобретете относится к промышленности строительных теплоизоляционных материалов.

Известен теплоизоляционный материал, содержащий, мас.%: каолиновое волокно 40,0-50,0; растворимое стекло 15,0-20,0; феррохромовый или ферромарганцевый шлак 20,0-30,0; асбест 10,0-15,0 [1].

Задачей изобретения является повышение термостойкости теплоизоляционного материала.

Технический результат достигается тем, что сырьевая смесь для изготовления теплоизоляционного материала, содержащая каолиновое волокно, растворимое стекло, асбест, дополнительно содержит молотое кварцевое стекло, каолин н глинозем при следующем соотношении компонентов, мас.%: каолиновое волокно 48,0-51,0; растворимое стекло 6,0-8,0; асбест 5,0-7,0; молотое кварцевое стекло 14,0-18; каолин 15,0-18,0; глинозем 4,0-6,0.

В таблице приведены составы сырьевой смеси для изготовления теплоизоляционного материала.

Таблица
Компоненты Состав, мас. %:
1 2 3
Каолиновое волокно 48,0 49,0 51,0
Растворимое стекло
- натриевое 8,0 4,0 -
- калиевое - 3,0 6,0
Асбест 7,0 6,0 5,0
Молотое кварцевое стекло 18,0 16,0 14,0
Каолин 15,0 17,0 18,0
Глинозем 4,0 5,0 6,0
Термостойкость (нагрев до 1000°С, охлаждение до 20°С на воздухе), циклы не менее 110 не менее 110 не менее 110

Компоненты дозируют в требуемых количествах. Кварцевое стекло (бой) размалывают до порошкообразного состояния, просеивают через сетку №008. Асбест подвергают распушке. Молотое кварцевое стекло, глинозем, растворимое стекло смешивают. В смесь вводят каолиновое волокно и подготовленный асбест, затем перемешивают все компоненты еще раз. Из подготовленной смеси формуют изделия (плиты, полуцилиндры, сегменты), которые обжигают при температуре 1220-1250°С.

Источник информации

1. SU 1143729, С04В 30/02, 1985.

Сырьевая смесь для изготовления теплоизоляционного материала, содержащая каолиновое волокно, растворимое стекло, асбест, отличающаяся тем, что дополнительно содержит молотое кварцевое стекло, каолин и глинозем при следующем соотношении компонентов, мас.%: каолиновое волокно 48,0-51,0; растворимое стекло 6,0-8,0; асбест 5,0-7,0; молотое кварцевое стекло 14,0-18,0; каолин 15,0-18,0; глинозем 4,0-6,0.



 

Похожие патенты:
Изобретение относится к области производства строительных материалов и может найти применение для высокотемпературной теплоизоляции конструкций различного назначения.

Изобретение относится к технологии несущих строительных плит. .

Изобретение относится к составам бетонных смесей. .
Изобретение относится к промышленности строительных материалов. .

Изобретение относится к области производства декоративных цементно-песчаных, бетонных, гипсовых изделий, а именно: разнообразных художественных панно, плит. .
Изобретение относится к области производства бетонных изделий с отделкой поверхности глазурью. .
Изобретение относится к химической промышленности. .
Изобретение относится к области производства стеновых строительных материалов. Сырьевая смесь для изготовления кирпича включает, мас.%: древесные опилки 52,8-59,7; кварцевый песок 15,0-20,0; портландцемент 25,0-27,0; метилсиликонат натрия 0,05-0,1; волокнистые отходы прядильного или ткацкого производства текстильной промышленности 0,1-0,25, при водоцементном отношении 0,6-0,65. Технический результат - повышение прочности. 1 табл.

Изобретение относится к области строительства, а именно к минеральным плитам для внутренней отделки помещений, в особенности для подвесных потолков. Минеральная плита, содержащая основной мат, включающий минеральные волокна, наполнитель, связующие вещества, на котором после его сушки нанесены дополнительные покрытия, где основной мат включает, мас. % от общей массы сухих твердых веществ плиты: минеральные волокна 30-80, в качестве наполнителя вспученный перлит 5-40, глина 5-30 и, при необходимости, карбонат кальция не более 20, связующие вещества, полученные из состава, включающего, мас. %: жидкое стекло 0,5-15 и/или термореактивное связующее Acrodur 950L 0,5-10, крахмал 2-11 и, при необходимости, целлюлозное связующее в виде бумаги не более 10, при этом локальные концентрации глины, жидкого стекла и/или термореактивного связующего Acrodur 950L, крахмала и, при необходимости, целлюлозного связующего в виде бумаги, постепенно уменьшаются по толщине плиты в направлении от лицевой к тыльной стороне плиты, а локальная плотность плиты постепенно уменьшается по толщине плиты в направлении от тыльной к лицевой стороне плиты и ее величина на тыльной стороне плиты не более чем в 1,2 раза превышает ее значение на лицевой стороне плиты. Технический результат - повышение качественных характеристик плит при возможном снижении энергозатрат на их изготовление.4 табл.,3 ил.
Изобретение относится к строительным материалам и описывает вспененно-волокнистый материал (плотностью 0,100-0,500 г/см3), применяемый для производства строительных и мебельных конструкций, стен, потолков, перегородок, тепло- и звукоизоляции, теплоизоляции бытовых и промышленных печей, электронагревательных приборов, узлов, имеющих высокую температуру, трубопроводов. Минеральный вспененно-волокнистый теплоизоляционный материал, полученный путем укладки в форму ламинирующего материала в виде пленки, фольги, листа, смачивания его составом, содержащим жидкое натриевое стекло с силикатным модулем 2,0-3,6 и тонкоизмельченный минеральный наполнитель - глину, мел или поваренную соль, укладки минерального волокна в виде матов толщиной от 3 до 100 мм, смачивания его сверху указанным составом, покрытия ламинирующим материалом с последующим нагревом закрытой формы до температуры 200-400°C в течение 20-60 мин со вспучиванием до увеличения объема в 5-8 раз при следующем соотношении компонентов, мас.%: жидкое натриевое стекло с силикатным модулем 2,0-3,6 20-79,8, минеральное волокно 20-79,8, тонкоизмельченный минеральный наполнитель 0,1-10, ламинирующий материал, образующий поверхность 0,1-10. Изобретение развито в зависимом пункте формулы. Технический результат - повышение прочности, долговечности и влагостойкости теплоизоляционного материала. 1 з.п. ф-лы, 7 пр.

Изобретение относится к промышленности строительных материалов, а именно к составам бетонных смесей, используемых при изготовлении сборных и монолитных железобетонных изделий и конструкций. Технический результат заключается в увеличении прочности на сжатие и морозостойкости. Способ приготовления базальтофиброармированных композиций для дисперсно-армированного пенобетона включает три стадии. Первая - приготовление цементно-песчаной смеси в циклическом смесителе гравитационного типа, вторая - мокрый домол цементно-песчаной смеси в дезинтеграторе, третья - смешение в турбулентном смесителе со скоростью смешения 500-600 об/мин мокрой домолотой цементно-песчаной смеси в течение не более 1,0 минуты с пенообразователем до получения необходимой величины по плотности готовой смеси, и базальтовой волоконной фиброй не более 1,0 минуты. 1 табл., 1 ил.

Изобретение относится к области строительства, в частности к искусственной фибре для приготовления бетонов. Фибра для дисперсного армирования бетона выполнена в виде прямолинейного отрезка нити 1 с анкерами, анкеры выполнены в виде поперечных выпусков 2 из той же нити, равномерно распределенных по всей ее длине, с образованием между ними открытых гнезд 3. Изобретение развито в зависимых пунктах. Технический результат - создание фибры с улучшенной анкерирующей способностью, повышающей структурную прочность бетона. 5 з.п. ф-лы, 8 ил., 1 пр.

Изобретение относится к области строительства. Фибра для дисперсного армирования бетона выполнена в виде отрезка нити с анкерами на концах. Отрезок нити состоит из двух ветвей, соединенных общим анкером, выполненным с возможностью изменения ориентации ветвей относительно общего анкера. В одном случае ветви фибры могут быть повернуты в плоскости х-y вокруг центра общего анкера относительно друг друга с углом поворота α=0°-90°, во втором случае ветви фибры могут быть раскрытия относительно друг друга в плоскости x-z, причем угол раскрытия β=0°-90°, а в третьем случае ветви фибры могут быть совместно (одновременно) повернуты и раскрыты относительно друг друга в пространстве x-y-z, причем угол поворота α равен углу раскрытия β и составляет 0°-45°. Техническим результатом является повышение структурной прочности бетона. 3 з.п. ф-лы, 6 ил.

Изобретение относится к промышленности строительных материалов, а именно к способу приготовления дисперсно-армированного строительного раствора для монолитных полов, и может быть использовано при изготовлении монолитных покрытий полов и стяжек на основе цементного раствора. Технический результат заключается в повышении прочности на сжатие и растяжение при изгибе и повышении степени однородности раствора. Способ приготовления дисперсно-армированного строительного раствора для монолитных полов включает перемешивание в смесителе портландцемента, фибры, заполнителя, пластифицирующей добавки и воды затворения, в качестве фибры используют базальтовое микроволокно, модифицированное полиэдральными многослойными углеродными наноструктурами фуллероидного типа, в качестве пластифицирующей добавки - гиперпластификатор на поликарбоксилатной основе, причем предварительно проводят диспергацию базальтового микроволокна в воде затворения с пластифицирующей добавкой роторным диспергатором в течение 9-11 мин, затем полученный продукт перемешивают в смесителе принудительного действия с заполнителем и портландцементом. 2 табл.

Изобретение относится к технологии получения неорганических термостойких, антикоррозионных строительных материалов, используемых в качестве теплоизоляции при возведении промышленных зданий, сооружений. В способе получения теплоизоляционного материала, заключающемся в смешивании неорганического природного материала, жидкого натриевого стекла, формовании массы в виде плит или блоков, сушке готового продукта, в качестве неорганического природного материала используют песок кварцевый, дополнительно вводят портландцемент, смесь шламовых отходов установок очистки сточных вод водоподготовки промышленных предприятий, дезактивированного катализатора процесса дегидрирования циклогексанола после их совместного измельчения в присутствии 1,5-2,0 мас. % карбамида, а в качестве добавки - базальтовую фибру или базальтовую муку, или их смесь, смешивание компонентов осуществляют в смесителе лопастного типа с последующим их перемешиванием с указанным жидким натриевым стеклом в общей сложности в течение 6-8 мин, формованием в виде плит размером 500×600×50 мм или блоков размером 300×600×200 мм, сушкой при температуре +10-35°С, при этом компоненты смеси берут в следующем соотношении, мас. %: жидкое натриевое стекло 16,0-32,0, портландцемент 18,0-20,0, песок кварцевый 20,0-25,0, смесь шламовых отходов и дезактивированного катализатора дегидрирования циклогексанола 3,5-6,0, карбамид 1,5-2,0, базальтовая фибра или базальтовая мука, или их смесь 25,0-31,0. Технический результат - повышение прочности при сжатии, снижение коэффициента теплопроводности, а также придание материалу антикоррозионных свойств, а именно устойчивости к воздействию растворов кислот, снижение энергоемкости производства. 1 табл., 3 пр.
Наверх