Способ получения линейных алканов

Изобретение относится к способу получения линейных алканов общей формулы Alk-СН2-СН3, где Alk=C6H13 , C8H17. Способ заключается в гидрировании олефина водородом на нанокатализаторе и характеризуется тем, что в качестве олефина используют октен-1 или децен-1, а в качестве нанокатализатора используют наночастицы никеля, получаемые in situ восстановлением хлорида никеля (II) алюмогидридом лития в среде тетрагидрофурана. Процесс проводят при атмосферном давлении водорода при температуре 50-70°С в течение 7-8 часов с последующим выделением целевых продуктов. Использование настоящего способа упрощает и удешевляет получение целевых соединений. 2 пр.

 

Изобретение относится к способу получения линейных алканов, в частности к новому способу гидрирования линейных α-олефинов, который применим в условиях лаборатории и позволяет получать линейные алканы общей формулы

где Alk=С6Н13, C8H17

которые находят применение в органическом синтезе в качестве полупродуктов, растворителей и топлив.

Известен способ получения алканов гидрированием линейных олефинов из ряда гексен-1, октен-1 на кластерных анионах в жидкой фазе газообразным водородом [On the catalytic activity of cluster anions in styrene hydrogenation: considerable enhancements in ionic liquids compared to molecular solvents / Dongbin Zhao, Paul J. Dyson, Gábor Laurenczy, J.Scott McIndoe // Journal of Molecular Catalysis - Volume: 214, Issue: 1, Pages: 19-25].

Недостатком этого метода является использование дорогостоящих реагентов и газообразного водорода давлением порядка 50 атм; также значительным недостатком является низкие показатели выхода по исходным олефинам (20-30%).

Известен способ получения гексана гетерогенно-каталитическим гидрированием олефинов из ряда: гексен-1, цис-гексен-2, транс-гексен-2 на наночастицах железа [At the frontier between heterogeneous and homogeneous catalysis: hydrogenation of olefins and alkynes with soluble iron nanoparticles / Claudine Rangheard, Cesar de Juli an Fernandez, Pim-Huat Phua, Johan Hoorn, Laurent Lefort // Dalton Trans., 2010, 39, - P.8464-8471].

Недостатком данного метода является необходимость использования автоклава для создания необходимого давления водорода (20 атм). Также имеются определенные трудности с приготовлением раствора катализатора, который готовится под азотной подушкой в течение получаса. Данным способом не получены соединения заявляемой структурной формулы.

Наиболее близким к предлагаемому изобретению является способ получения линейных алканов гидрированием олефинов из ряда: октен-1, гексен-1, гексен-2 водородом при атмосферном давлении в присутствии специально приготовленного катализатора, при этом катализатор получают восстановлением диацетата никеля металлическим натрием, цинковой пылью, алюмогидридом лития или боргидридом натрия [ACTIVATION OF REDUCING AGENTS.SODIUM HYDRIDE CONTAINING COWLEX REDUCING AGENTS. VII. NiC, A NEW HETEROGENEOUNS Ni HYDROGENATION CATALYST / J.J.BRUNET, P.GALLOIS, P.CAUBERE // Tetrahedron Letters 1977, - No. 45, pp.3955-3958].

Недостатком этого способа является стадия нейтрализации избытка пожароопасного восстановителя, приводящая к потерям достаточно дорогостоящих реагентов. Данным способом получено лишь одно соединение заявляемой структурной формулы. Кроме этого, продукты реакции определялись методом газо-жидкостной хроматографии без их выделения.

Задачей заявляемого способа является разработка технологичного метода гидрирования газообразным водородом, не требующего использования дорогостоящих катализаторов и сложных технологических условий, который будет позволять достигать высоких значений выхода по исходному олефину в условиях химической лаборатории с использованием доступных реагентов.

Техническим результатом является упрощение метода получения соединений заявляемой структурной формулы.

Поставленный результат достигается в новом способе получения линейных алканов общей формулы

где Alk=С6Н13, C8H17

заключающемся в гидрировании олефина водородом на нанокатализаторе, отличающемся тем, что в качестве олефина используют октен-1 или децен-1, а в качестве нанокатализатора используют наночастицы никеля, получаемые in situ восстановлением хлорида никеля (II) алюмогидридом лития в среде тетрагидрофурана и процесс проводят при атмосферном давлении водорода при температуре 50-70°С в течение 7-8 часов с последующим выделением целевых продуктов.

Сущностью метода является реакция гидрирования олефинов из ряда: октен-1, децен-1 газообразным водородом в среде тетрагидрофурана в присутствии наночастиц никеля.

Способ осуществляется следующим образом.

В плоскодонную колбу загружается алюмогидрид лития, тетрагидрофуран и безводный хлорид никеля (II) в мольном соотношении алюмогидрид лития: хлорид никеля (II), равном 1:2, и получают катализатор по реакции

2NiCl2+LiAlH4=2Ni0+LiCl+AlCl3+2H2

Количество алюмогидрида рассчитывается исходя из количества получаемого катализатора с незначительным избытком, и, следовательно, гидроалюминирования олефина не происходит. После получения черного прозрачного в тонком слое коллоидного раствора металла загружается гидрируемый субстрат и через реакционную массу барботируется газообразный водород, который предварительно пропускается через слой концентрированной серной кислоты для очистки от следов влаги, при атмосферном давлении в течение 7-8 часов при слегка повышенной температуре. Катализатор в ходе реакции коагулирует и образовываются агломераты частиц, которые затем могут быть отделены фильтрованием. При необходимости для коагуляции частиц катализатора в реакционную смесь добавляют несколько капель воды. Из фильтрата выделяют целевой продукт перегонкой при атмосферном давлении.

Свойства синтезированных н-октана и н-декана соответствуют литературным данным.

Так как стабилизации коллоидных растворов наночастиц металлов не требуется, это значительно упрощает и удешевляет предлагаемый способ гидрирования. Так как и при синтезе катализатора, и при восстановлении заявленных веществ используются одинаковые условия, весь процесс сводится к одностадийному синтезу, при котором катализатор образуется in-situ из доступного хлорида никеля. Также достоинством предлагаемого изобретения является использование водорода при атмосферном давлении, что позволяет упростить и удешевить способ получения целевых продуктов.

Изобретение иллюстрируется следующими примерами:

Пример 1

Октан.

В плоскодонную колбу, снабженную барботером и обратным холодильником, загружают суспензию 0,25 г (0,065 моль) алюмогидрида лития в 50 мл осушенного тетрагидрофурана, после чего постепенно присыпают 1,75 г (0,014 моль) безводного хлорида никеля (II), при этом наблюдают образование черного коллоидного раствора. После этого включают барботаж водорода и добавляют 50 г (0,24 моль) октена-1. Реакцию проводят при нагреве до 50°С в течение 8 часов. По окончании реакции смесь охлаждают, добавляют 1 мл воды для ускорения коагуляции катализатора. Осевший осадок отфильтровывают, отделяют органический слой фильтрата и отгоняют тетрагидрофуан. Остаток перегоняют при атмосферном давлении, получают 22,5 г (0,197 моль, 82%) октана, бесцветная жидкость, т.к. 124-127°С (лит т.кип. 124-126°С).

Пример 2

Декан.

В плоскодонную колбу, снабженную барботером и обратным холодильником, загружают суспензию 0,25 г (0,065 моль) алюмогидрида лития в 50 мл осушенного тетрагидрофурана, после чего постепенно присыпают 1,75 г (0,014 моль) безводного хлорида никеля (II), при этом наблюдают образование черного коллоидного раствора. После этого включают барботаж водорода и добавляют 57 г (0,24 моль) децена-1. Реакцию проводят при нагреве до 70°С в течение 7 часов. По окончании реакции смесь охлаждают, добавляют 1 мл воды для ускорения коагуляции катализатора. Осевший осадок отфильтровывают, отделяют органический слой фильтрата и отгоняют тетрагидрофуран. Остаток перегоняют при атмосферном давлении, получают 26,27 г (0,182 моль, 76%) декана, бесцветная жидкость, т.к. 174-175°С (лит т.кип. 174-175°С).

Таким образом, вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного изобретения следующей совокупности условий:

- средство, воплощающее заявленное изобретение при его осуществлении, предназначено для применения в лабораторных условиях;

- для заявленного изобретения в том виде, как оно охарактеризовано в независимом пункте нижеизложенной формулы изобретения, подтверждена возможность его осуществления с помощью вышеописанных в заявке или известных до даты приоритета средств и методов;

- средство, воплощающее заявленное изобретение, при его осуществлении способно обеспечить достижение технического результата.

Выводы

Разработан новый способ получения линейных алканов, который протекает с высоким выходом по исходным гидрируемым олефинам, заключающийся в восстановлении олефинов при помощи газообразного водорода атмосферного давления в присутствии наночастиц никеля, отличающийся тем, что в качестве исходных олефинов используют октен-1, децен-1, причем восстановление проводят в среде тетрагидрофурана, а в качестве катализатора используются наночастицы никеля, получаемые из хлорида никеля (II) in situ, и процесс проходит при температуре 50-70°С в течение 7-8 часов. Свойства синтезированных соединений соответствуют литературным данным.

Способ получения линейных алканов общей формулы Alk-СН2-СН3, где Alk - С6Н13, С8Н17, заключающийся в гидрировании олефина водородом на нанокатализаторе, отличающийся тем, что в качестве олефина используют октен-1 или децен-1, а в качестве нанокатализатора используют наночастицы никеля, получаемые in situ восстановлением хлорида никеля (II) алюмогидридом лития в среде тетрагидрофурана и процесс проводят при атмосферном давлении водорода при температуре 50-70°С в течение 7-8 ч с последующим выделением целевых продуктов.



 

Похожие патенты:
Изобретение относится к нефтегазовой и нефтехимической промышленности, к процессам получения и использования низших парафиновых углеводородов, а именно к процессу очистки их от примесей метилового спирта (метанола).

Изобретение относится к твердым формованным катализаторам, легко отделяемым от реагентов и повторно используемым в реакциях алкилирования, этерификации и изомеризации.

Впт в // 406818

Изобретение относится к способу получения дициклопентена (трицикло-[5.2.1.02.6]децена-3), включающему гидрирование дициклопентадиена в растворе водородом в жидкой фазе с использованием тонкодисперсных катализаторов платиновой группы при атмосферном давлении и умеренной температуре (30-80°C) и последующее выделение целевого продукта.

Изобретение относится к способу получения производных норборнана общей формулы где R=H, R1=CN, или R-R 1=-CH=CH-CH2-. .

Изобретение относится к способу получения разветвленных насыщенных углеводородов, характеризующемуся тем, что на первой стадии сырье, содержащее, по меньшей мере, одну жирную кислоту, имеющую общее количество атомов углерода от 8 до 26, этерифицируют, по меньшей мере, одним жирным спиртом, имеющим общее количество углерода от 8 до 26, с получением сложных эфиров, на второй стадии полученные сложные эфиры гидрируют до жирных спиртов, на третьей стадии полученные жирные спирты дегидратируют до альфа-олефинов, на четвертой стадии альфа-олефины олигомеризуют в олигомеры, а на пятой стадии олигомеры гидрируют.

Изобретение относится к смеси изоалканов, в качестве масляных тел для косметических или фармацевтических средств, 1H-ЯМР-спектр которой в области химического сдвига от 0,6 до 1,0 м.д.

Изобретение относится к способу получения изобутилена и бутадиена-1,3 каталитическим дегидрированием соответствующих парафиновых углеводородов на алюмохромовом катализаторе при повышенной температуре, разделением полученных продуктов дегидрирования методами абсорбции-десорбции и экстрактивной ректификации с получением товарных изобутилена и бутадиена-1,3 олефиновых углеводородов C4, непревращенных парафинов и горючих отходов производства: «легких» и «тяжелых» неабсорбированных газов и бутадиен-ацетиленового концентрата, причем смесь «тяжелых» неабсорбированных газов с бутадиен-ацетиленовым концентратом и частью «легких» неабсорбированных газов пропускают через бинарный слой катализаторов гидрирования, один из которых никель-хромовый, а другой алюмопалладиевый, и на выходе получают пропановую фракцию.

Изобретение относится к способу гидрогенизации олефинсодержащего сырья, состоящего из множества различных ненасыщенных олефиновых углеводородных соединений. .

Изобретение относится к усовершенствованному способу удаления ацетиленовых соединений из потоков углеводородов, включающему приведение в контакт потока углеводородов, содержащего первую концентрацию ацетиленовых соединений и олефинов, с катализатором, состоящим из несульфидированного металлического никеля на носителе либо состоящим из несульфидированного металлического никеля на носителе, модифицированного такими металлами, как Мо, Re, Bi или их смеси, причем указанный несульфидированный никель присутствует на носителе в количестве, превосходящем, по меньшей мере, на 5% количество, необходимое для селективного гидрирования, в присутствии водорода в первой реакционной зоне при температуре и давлении, а также концентрации водорода, способствующих гидрированию ацетиленовых соединений, и выделение указанного углеводородного сырья, имеющего вторую концентрацию ацетиленовых соединений, которая ниже, чем первая концентрация.
Изобретение относится к химической и нефтехимической промышленности, а именно к селективному гидрированию примесей непредельных углеводородов в продуктах пиролиза, в частности к селективному гидрированию диеновых углеводородов во фракциях углеводородов.
Изобретение относится к области деревообрабатывающей промышленности, в частности к пропитке древесины. .

Изобретение относится к области металлургии, в частности к способам обработки полуфабрикатов из титанового сплава ВТ6, и может быть использовано в машиностроении, авиадвигателестроении и медицине.
Изобретение относится к медицине и ветеринарии, а именно к нейрохирургии, и может быть использовано для направленной доставки фармакологических средств в центральную нервную систему живого организма.

Изобретение относится к энергосберегающим светотехническим приборам. .
Наверх