Фильтр-сепаратор

Изобретение относится к области нефтехимического и газового машиностроения, в частности к коалесцирующим, фильтрующим и сепарационным устройствам. Фильтр-сепаратор содержит корпус с входами газожидкостной смеси, выходами газа, отделенной жидкости и примесей, установленными в нем фильтр-коалесцирующими секциями, выполненными из пористых элементов, и секции сепарации. Пористые элементы выполнены из ориентированных к вертикали объемных, пористых незамкнутых между собой по ходу подачи газожидкостной смеси пластин, поверхности которых снабжены, с одной стороны, решетками наддува потока газожидкостной смеси, с другой - решетками отбора газа. В корпусе последовательно друг за другом установлено несколько фильтр-коалесцирующих секций, в которых пористые пластины последующей секции установлены против выходов газа из предыдущей секции. Решетки наддува выполнены с открытыми для входа газожидкостной смеси тангенциальными каналами, а решетки отбора газа - с закрытыми каналами. Секция сепарации выполнена из перфорированных незамкнутых между собой по ходу подачи газожидкостной смеси пластин, поверхности которых снабжены ориентированными к вертикали пористыми жгутами, которые смещены относительно друг друга и пористых жгутов смежной пластины. Использование изобретения обеспечивает увеличение производительности фильтр-сепаратора. 3 з.п. ф-лы, 5 ил.

 

Изобретение относится к области нефтехимического и газового машиностроения, в частности к коалесцирующим, фильтрующим и сепарационным устройствам. Оно может быть использовано в процессах отделения мелкодисперсной капельной жидкости от газового потока в промысловых установках подготовки природного и попутного нефтяного газов, подготовки газов с подземных хранилищ, сепарации газов до и после компрессорных станций, в установках низкотемпературной сепарации газов.

Известна вертикальная компоновка фильтр-сепарационной секции, например, в колонных аппаратах (авторское свидетельство №670317 и патент РФ №2120327, МПК B01D 53/18), в которых фильтрующие и сепарационные элементы расположены на горизонтальных тарелках, установленные в поперечном сечении аппарата.

Недостатком этих устройств являются:

- малый срок службы из-за забивания фильтрующих элементов примесями, что приводит к проскоку газа через трубу слива жидкости, то есть нарушению работы гидрозатвора;

- большое гидравлическое сопротивление элементов по газу, т.к. весь газовый поток проходит через толщину фильтрующего материала элементов с площадью ограниченной поперечным сечением аппарата, что требует значительных энергетических затрат на подготовку газа;

- необходимость иметь резервную технологическую нитку из-за частой остановки фильтр-сепаратора для смены элементов.

Известен фильтр-сепаратор горизонтального типа, «Энергосберегающие технологии при переработке газа и газового конденсата», ВНИИГАЗ, Москва - 1996, стр.138) (прототип), который включает два цилиндрических корпуса, в верхнем расположены секция фильтрации твердых частиц и коалесценции капель жидкости на фильтрующих цилиндрических элементах и секция сепарации капельной жидкости, выполненная на цилиндрических сетчатых патронах. В нижнем корпусе выполнены сборники жидкости для каждой из верхних секций.

Основные недостатки фильтрующей секции:

- большое гидравлическое сопротивление из-за малого живого сечения тарелки, на которой размещены фильтрующие элементы, всего (25-35)% от поперечного сечения корпуса аппарата;

- значительные гидравлические сопротивления фильтрующего материала, особенно при наличии в газе механических примесей, т.к. весь газ проходит через толщину слоя фильтрующего материала;

- незначительный срок службы фильтрующих элементов (порядка 3-6 месяцев), что обуславливает необходимость иметь резервный аппарат;

- необходимость иметь два сборника жидкости и запорно-регулирующую арматуру к каждому, так как секции имеют различное гидравлическое сопротивление и при наличии одного сборника возникают перетоки газа между ними;

- неравномерное распределение газового потока на горизонтальную продольную тарелку с сетчатыми патронками, т.к. живое сечение подачи и отбора газа на тарелку менее 50% живого сечения аппарата, что также увеличивает его гидравлическое сопротивление.

Увеличенное гидравлическое сопротивление аппарата не допустимо, так как требуется повышение энергетических затраты при компремировании газовых потоков.

Технический результат предлагаемого изобретения заключается в снижении гидравлического сопротивления фильтр-сепаратора, следствием которого является снижение энергетических затрат на процессы разделения газожидкостной смеси, увеличении производительности аппарата и увеличении скорости газовых потоков, увеличение его срока службы.

Для достижения указанного технического результата в фильтр-сепараторе, включающем корпус с входами газожидкостной смеси, выходами газа, отделенной жидкости и примесей, установленными в нем фильтр-коалесцирующей секции, выполненными из пористых элементов и секции сепарации, пористые элементы выполнены из ориентированных к вертикали объемных, пористых не замкнутых между собой по ходу подачи газожидкостной смеси пластин, поверхности которых снабжены, с одной стороны, решетками наддува потока газожидкостной смеси, с другой - решетками отбора газа. В корпусе последовательно друг за другом установлено несколько фильтр-коалесцирующих секций, в которых пористые пластины последующей секции установлены против выходов газа с предыдущей секции и перекрывают в проекции выходы. Решетки наддува выполнены с открытыми для входа газожидкостной смеси тангенциальными каналами, а решетки отбора газа - с закрытыми каналами.

Секция сепарации выполнена из продольных, перфорированных не замкнутых между собой по ходу подачи газожидкостной смеси пластин, поверхности которых снабжены ориентированными к вертикали пористыми жгутами, которые смещены относительно друг друга и пористых жгутов смежной пластины.

Выполнение пористых элементов из ориентированных к вертикали объемных, пористых не замкнутых между собой по ходу подачи газожидкостной смеси пластин, поверхности которых снабжены, с одной стороны, решетками наддува потока газожидкостной смеси, с другой - решетками отбора газа, позволило снизить их гидравлическое сопротивление за счет исключения прохождения всего газожидкостного потока через фильтрующую поверхность (фильтрующий материал), а только его части, для переноса мелкодисперсных капель и примеси на поверхность путем образования на них перепада давления решетками наддува и отбора газа, при прохождении основного потока вдоль пористых элементов.

Установление в корпусе последовательно друг за другом нескольких фильтр-коалесцирующих секций, в которых пористые пластины последующей секции установлены против выходов газа с предыдущей секции с перекрытием проекции живых сечений, позволило увеличить эффективность коалесценции и фильтрации за счет увеличения их поверхности, времени пребывания и улавливания капель жидкости при случайных проскоках с предыдущей ступени.

Выполнение решеток наддува с открытыми для входа газожидкостной смеси тангенциальными каналами, а решеток отбора газа с закрытыми каналами позволило увеличить перепад давления на противоположных поверхностях пористых пластин, что обеспечило притяжение мелкодисперсных капель жидкости.

Выполнение секции сепарации из продольных перфорированных, не замкнутых между собой по ходу подачи газожидкостной смеси пластин, поверхности которых снабжены ориентированными к вертикали пористыми жгутами смещенных относительно друг друга и пористых жгутов смежной пластины, позволило снизить гидравлическое сопротивление секции сепарации путем исключения прохождения всего газа через пористую стенку сепарационного материала и накопления в ней жидкости.

Снижение гидравлических сопротивлений в обеих секциях фильтр-сепаратора позволило выполнить его с одним сборником жидкости.

Заявителю не известны из существующего уровня техники фильтр-сепараторы, в которых бы подобным образом достигались эффекты: снижение гидравлического сопротивления и энергетических затрат на подготовку газа, повышение производительности, и как следствие, снижение удельной материалоемкости аппарата, то есть капитальных затрат.

На фиг.1 представлен общий вид фильтра-сепаратора.

На фиг.2 - разрез А-А на фиг.1.

На фиг.3 - разрез Б-Б на фиг.1.

На фиг.4 дан вид I на сепарационные продольно установленные сепарационные пластины с пористыми жгутами.

На фиг.5 дан вид на решетки наддува газожидкостной смеси и отбора газа, между которыми расположены фильтр-коалесцирующие пластины.

Фильтр-сепаратор 1 (фиг.1) содержит корпус 2 со штуцером входа газожидкостной смеси 3, штуцером выхода очищенного газа 4, патрубком выхода отделенной жидкости и примесей 5, соединенный с отстойником 6, снабженный штуцером сброса отсепарированной смеси 7. В корпусе 2 размещены фильтр-коалесцирующие 8 и сепарационная 9 секции. Корпус 2 и отстойник 6 расположены на общих опорах 10.

Фильтр-коалесцирующая секция 8 выполнена из ориентированных к вертикали объемных, пористых не замкнутых между собой по ходу подачи газожидкостной смеси пластин 11 (фиг.2, 3), поверхности которых снабжены, с одной стороны, решетками наддува потока газожидкостной смеси 12, с другой - решетками отбора газа 13 (фиг.2, 3). Решетка 12 снабжена каналами 14, открытыми навстречу газожидкостному потоку, а решетка 13 - эжекционными каналами 15, открытыми по ходу движения газового потока.

Штуцер входа газа 3 на выходе снабжен предварительным узлом инерционной сепарации газа 16 (фиг.1, 2) от жидкости и примесей. Для сбора и отвода жидкости и примесей из узла 16 он снабжен желобом 17 (фиг.1). Для сбора жидкости из секций фильтр-коалесцирующей и сепарационной в нижней части корпуса 2 установлена перегородка 18 (фиг.1).

Сепарационная секция 9 (фиг. 1) состоит из продольно установленных в корпусе 2 вертикально ориентированных пластин 19 (фиг.4) на поверхностях, которых в шахматном порядке расположены ориентированные к вертикали пористые жгуты 20 (фиг.2, 4). Пластины 19 могут быть снабжены перфорацией для выравнивания давления по поперечному сечению аппарата и принудительного стока жидкости газовым потоком.

Фильтр-сепаратор работает следующим образом.

Поток газожидкостной смеси поступает через штуцер 3 (фиг.1) в узел предварительной инерционной сепарации 16 (фиг.1, 2), на котором отделяют основные механические примеси, свободную жидкость и ее крупные капли. Жидкость с примесями отводят по желобу 17 в нижнюю часть корпуса 2, а газ подают на коалесцирующие ступени 8 для укрупнения мелкодисперсных капель жидкости и улавливания оставшейся примеси. При подаче газожидкостного потока на коалесцирующую ступень 8 его распределяют по сечению корпуса аппарата 2 на ряд параллельных потоков, пропорциональных живым сечениям между не замкнутыми между собой по ходу газа пористыми пластинами 11 (фиг.2, 3). Из параллельных потоков часть газожидкостной смеси подают в открытые каналы 14 решеток наддува 12 (фиг.2, 3) на пористые пластины 11 (фиг.2, 3). Очищенный от жидкости газ эжектируют (подсасывают) через эжекционные каналы 15 параллельным смежным потоком. После очистки на первой ступени коалесценции 8 газожидкостную смесь подают на очистку последующей ступени 8. Дисперсными каплями жидкости смачивают пластины 11, укрупняют, накапливают и отбирают силами гравитации по пластинам 11 в нижнюю часть корпуса аппарата. Газ, очищенный от мелкодисперсных капель жидкости, подают на секцию сепарации 9 для окончательного улавливания унесенной с коалесцирующих ступеней жидкости.

Для снижения гидравлического сопротивления секции сепарации она как и секция фильтрации выполнена из продольно установленных по ходу движения газа пластин 19 (фиг.1, 4), снабженных пористыми жгутами 20 (фиг.2, 4). Капли жидкости оседают на поверхностях пластин 19, с которых силами гравитации транспортируют по пористым жгутам 20 в нижнюю часть корпуса аппарата 2. Накопленная в нижней части аппарата жидкость из фильтрующей и сепарационной секций отводят по патрубку 5 в отстойник 6, откуда сбрасывают по уровню через штуцер 7.

Таким образом, выполнение фильтр-коалесцирующих пористых элементов из ориентированных к вертикали объемных, не замкнутых между собой по ходу подачи газожидкостной смеси пластин, поверхности которых снабжены, с одной стороны, решетками наддува потока газожидкостной смеси, с другой - решетками отбора газа, установка в корпусе последовательно друг за другом несколько фильтр-коалесцирующих секций, в которых пористые пластины последующей секции установлены против выходов газа с предыдущей секции с перекрытием проекций живых сечений, выполнение решетки наддува с открытыми для входа газожидкостной смеси тангенциальными каналами, а решетки отбора газа - с закрытыми каналами, выполнение секции сепарации из перфорированных не замкнутых между собой по ходу подачи газожидкостной смеси пластин, поверхности которых снабжены ориентированными к вертикали пористыми жгутами, смещенные друг к другу и относительно пористых жгутов соседней пластины, позволило обеспечить технический результат, заключающийся в снижении гидравлического сопротивления фильтр-сепаратора, следствием которого является снижение энергетических затрат на процессы разделения газожидкостной смеси, увеличение производительности аппарата и увеличение скорости газовых потоков.

1. Фильтр-сепаратор, содержащий корпус с входами газожидкостной смеси, выходами газа и отделенной жидкости и примесей, установленными в нем фильтр-коалесцирующей секции, выполненной из пористых элементов, и секции сепарации, отличающийся тем, что пористые элементы выполнены из ориентированных к вертикали объемных пористых незамкнутых между собой по ходу подачи газожидкостной смеси пластин, на поверхности которых выполнены с одной стороны решетки наддува потока газожидкостной смеси, а с другой - решетки отбора газа.

2. Фильтр-сепаратор по п.1, отличающийся тем, что он содержит дополнительные фильтр-коалесцирующие секции, установленные в корпусе последовательно друг за другом, в которых пористые пластины последующей секции установлены против выходов газа из предыдущей секции.

3. Фильтр-сепаратор по п.1, отличающийся тем, что решетки наддува выполнены с открытыми для входа газожидкостной смеси тангенциальными каналами, а решетки отбора газа - с закрытыми каналами.

4. Фильтр-сепаратор по п.1, отличающийся тем, что секция сепарации выполнена из перфорированных незамкнутых между собой по ходу подачи газожидкостной смеси пластин, на поверхности которых расположены ориентированные к вертикали пористые жгуты, которые смещены относительно друг друга и пористых жгутов смежной пластины.



 

Похожие патенты:

Изобретение относится к области судостроения, в частности к системам очистки воздуха, подаваемого в двигатель для горения топлива, преимущественно газотурбинным, для которых требования по содержанию воды и соли, например морской, являются наиболее жесткими.

Изобретение относится к нефтяной промышленности и может найти применение при очистке нефтяного попутного газа на нефтяных месторождениях. .

Изобретение относится к области нефтегазового и химического машиностроения, а именно к сепарационным устройствам, расположенным в корпусах аппаратов или в трубе, и может быть использовано в процессах отделения жидкостей и примесей из газового потока в установках подготовки газов: природного и попутного, низкотемпературной сепарации, компримирования, факельных, первичных, трубных сепараторах.

Изобретение относится к коллекторам сбора жидкости для массообменных и сепарационных аппаратов, в частности для сбора жидкости, ее отвода или перераспределения по поперечному сечению аппарата, для распределения и сепарации газовых потоков от капель жидкости.

Сепаратор // 2438756
Изобретение относится к теплообменной технике и предназначено для использования при расчете ширины кольцевого зазора для прохождения газа по высоте перфорированной обечайки в номинальном режиме эксплуатации сепаратора, устанавливаемой в качестве внутрисепарационного устройства при достижении необходимого технологического процесса разделения газожидкостного потока на компоненты.

Сепаратор // 2438755
Изобретение относится к теплообменной технике и предназначено для использования при расчете ширины кольцевого зазора для прохождения газа по высоте перфорированной обечайки в номинальном режиме эксплуатации сепаратора, устанавливаемой в качестве внутрисепарационного устройства при достижении необходимого технологического процесса разделения газожидкостного потока на компоненты.

Сепаратор // 2433854
Изобретение относится к теплообменной технике и предназначено для использования в качестве внутрисепарационного устройства измерения уровня воды в сепараторе при достижении необходимого технологического процесса разделения газожидкостного потока на компоненты.

Сепаратор // 2422189
Изобретение относится к теплообменной технике и предназначено для использования в качестве сепарационного устройства при достижении необходимого технологического процесса разделения газожидкостного потока на компоненты.

Изобретение относится к технике очистки технологических и неорганизованных выбросов от пыли и других посторонних твердых частиц, поступающих на сухую газоочистку, и может быть использовано в металлургической промышленности.

Изобретение относится к устройствам для разделения жидкости и пара. .

Изобретение относится к технике, предназначенной для осаждения и удаления влаги из сжатых газов. Резервуар для осаждения и удаления влаги представляет собой корпус, к обечайке которого прикреплены сваркой ряд вертикальных гофрированных оцинкованных пластин с наклонными перегородками и который имеет дренажную трубу. Наклонные перегородки установлены по высоте пластин и образуют каналы для отвода жидкости, имеющие треугольную форму. Перегородки выполнены изогнутыми в средней части. Корпус также снабжен перемычкой, установленной под нижней перегородкой и соединяющей соседние пластины. В гофрированных пластинах выполнены прорези, снабженные лепестками, отогнутыми в противоположные стороны. При этом корпус покрыт сплошным слоем термостойкой теплопроводной пасты с чередующимися по его длине участками различной толщины - ребрами. Изобретение обеспечивает эффективное охлаждение, осаждение и удаление влаги из сжатых газов за счет улучшения теплообмена с окружающей средой. 1 ил.

Изобретение относится к транспортному машиностроению, в частности к устройствам для очистки воздуха от твердых частиц, капель морской воды и соли на входе судовых газотурбинных двигателей. Устройство включает инерционный сепаратор в виде, по крайней мере, одного пакета вертикально ориентированных профилей с влагоулавливающими элементами, коагулятор и устройство для сбора и отвода выделенных из воздуха частиц аэрозоля. Передняя кромка профилей выполнена острой, задняя - разрезной в виде влагоулавливающего элемента, а коагуляторы в виде заостренных шевронов установлены на передних кромках влагоулавливающих элементов. Монолитность конструкции вертикально ориентированных профилей с влагоулавливающими элементами обеспечивает технологичность их массового производства с помощью фильер. 2 ил.

Изобретение относится к транспортному машиностроению, в частности к системам очистки воздуха на входе судовых газотурбинных двигателей. Система очистки воздуха включает сепаратор с конфузором, горловиной, диффузором и капле-пылеуловителем, установленные в воздуховоде, и устройство для сбора и отвода выделенных из воздуха частиц аэрозоля. В горловине сепаратора установлены направляющий аппарат из плоских профилей и решетка аэродинамических профилей с разрезной задней кромкой и перфорированной их выпуклой аэродинамической поверхностью. Технический результат: высокая надежность, гидравлические потери не превышают 200 Па и низкий уровень эксплуатационных расходов. 1 ил.

Изобретение относится к пластинчатому сепаратору для отделения капель жидкости от текучей среды с жидкой фазой. Пластинчатый сепаратор для отделения капель жидкости от текучей среды с жидкой фазой включает в себя, по меньшей мере, два практически вертикально ориентированных пластинчатых профиля, расположенных на расстоянии друг от друга и образующих канал для протекания между ними текучей среды с жидкой фазой, на поверхности стенок которых осуществляется отделение капель жидкости, и отстойник, расположенный под пластинчатыми профилями, служащий для приема жидкости, отделившейся от текучей среды с жидкой фазой. Отстойник имеет, по меньшей мере, одну разделительную стенку, делящую отстойник на несколько частей. Пластинчатые профили выполнены, по меньшей мере, частично гофрированными и ориентированы параллельно друг другу. Несколько экранов выступают в канал потока, по меньшей мере, от одного из указанных пластинчатых профилей и направлены против направления потока (S), образуя улавливающие карманы, направленные против направления потока (S) и служащие для отделения капель жидкости. Несколько подрезанных пластинок, выступающих из одного и того же пластинчатого профиля, образуют полости, ориентированные по направлению потока (S) так, что подрезанные пластинки перекрыты на заданную длину со своих внешних сторон, направленных в сторону от пластинчатого профиля, экранами, направленными против направления потока (S), образуя лабиринтную отделительную систему для отделения капель жидкости. Подрезанные пластинки установлены только на первой половине пластинчатого профиля по направлению потока (S). Техническим результатом является предотвращение завихрения жидкости в отстойнике. 7 з.п. ф-лы, 6 ил.

Изобретение относится к каплеотделителю для отделения капелек из содержащего капельки газа. Каплеотделитель (10) содержит проточный канал (5), который предназначен для направления через него содержащего капельки газа и прохождения потока этого содержащего капельки газа вдоль основного направления потока, при этом вокруг проточного канала (5) расположен по существу кольцеобразно отделительный элемент (8), который предназначен для прохождения направленного от проточного канала (5) кольцевого потока. Отделительный элемент (8) имеет донный элемент (11) и закрывающий элемент (12), а также множество соединительных элементов (1), которые расположены между донным элементом (11) и закрывающим элементом (12) так, что донный элемент (11) и закрывающий элемент (12) расположены на расстоянии друг от друга, которое задано соединительными элементами (1). Соединительный элемент (1) содержит стенной элемент (3), который предназначен для направления вдоль него в виде пленки капелек содержащего капельки газа в направлении донного элемента (11), при этом стенной элемент (3) имеет отделительную поверхность, которая имеет среднюю ширину больше 1 мм. Отделительный элемент (8) содержит кольцевой элемент (17), который расположен по существу кольцеобразно вокруг проточного канала (5) и имеет внутреннюю боковую поверхность, которая имеет по существу диаметр проточного канала (5), и предусмотрены проходные отверстия для входа содержащего капельки газа в кольцевой элемент. Техническим результатом изобретения является создание каплеотделителя, с помощью которого обеспечивается возможность улучшенного отделения, в частности, небольших капелек. 2 н. и 13 з.п. ф-лы, 1 табл., 24 ил.

Изобретение относится к транспортному машиностроению, в частности к устройствам очистки воздуха, и может быть использовано для судовых энергетических установок при очистке воздуха от морской воды, соли и твердых частиц на входе судовых газотурбинных двигателей. Устройство очистки воздуха содержит корпус, инерционный сепаратор, коагулятор и устройство для сбора и отвода выделенных из воздуха частиц аэрозоля. Инерционный сепаратор состоит, по крайней мере, из одного пакета зигзагообразных вертикально ориентированных профилей с влагоулавливающими элементами. Влагоулавливающие элементы установлены в зигзагообразных каналах инерционного сепаратора, образованных вертикально ориентированными профилями, как у вершин, так и во впадинах каждой волны профиля. Зигзагообразные вертикально ориентированные профили имеют переднюю и заднюю кромки в виде влагоулавливающих элементов, а коагулятор выполнен распределенным по всему объему инерционного сепаратора в виде сетчатых элементов, установленных на влагоулавливающих элементах инерционного сепаратора. Технический результат заключается в устранении вибраций и повышении степени очистки воздуха. 1 з.п. ф-лы, 3 ил.

Изобретение предназначено для разделения неоднородных систем газ-жидкость на газовую и жидкую фазы и может быть использовано в нефтеперерабатывающей, газовой, нефтехимической, химической, пищевой и других отраслях промышленности. Отстойник включает горизонтальный цилиндрический корпус с днищами, штуцер ввода неоднородной системы и штуцера вывода газовой и жидкой фаз. Под штуцером ввода неоднородной системы расположен сопряженный с горизонтальным цилиндрическим корпусом перфорированный цилиндрический отбойник с коническими пластинами, по обе стороны от которого расположены секции сепарации в виде пакета регулярной многослойной насадки из гофрированных проницаемых пластин. Секции сепарации образуют в горизонтальном цилиндрическом корпусе емкости вертикальную цилиндрическую стенку или параллельную с осью горизонтального цилиндрического корпуса емкости горизонтальную прямоугольную стенку, сопряженную с двух параллельных оси торцов с горизонтальным цилиндрическим корпусом емкости и с двух перпендикулярных оси торцов с дополнительными сегментными пластинами. В нижней части горизонтального цилиндрического корпуса расположены перфорированные сегментные перегородки. Технический результат: эффективность разделения газ-жидкость, снижение металлоемкости, универсальность конструкции. 7 з.п. ф-лы, 2 ил.

Изобретение предназначено для разделения неоднородных систем газ-жидкость типа «туман» на газовую и жидкую фазы и может быть использовано в нефтеперерабатывающей, газовой, нефтехимической, химической, пищевой и других отраслях промышленности для разделения газожидкостных смесей. Вертикальный сепаратор включает вертикально-цилиндрический корпус, штуцер ввода неоднородной системы, штуцер вывода газовой фазы, штуцер вывода жидкой фазы и сепарационные элементы. Сепарационные элементы представляют собой пакеты регулярной многослойной насадки из гофрированных проницаемых пластин. Пакеты пластин образуют в вертикально-цилиндрическом корпусе стенку, состоящую, по крайней мере, из двух секций, сопряженных с вертикально-цилиндрическим корпусом емкости и горизонтальными сегментными перегородками. В нижней части вертикально-цилиндрического корпуса расположена секция сбора выделенной из газа жидкости, соединенная переливными трубами с горизонтальными сегментными перегородками. Технический результат: снижение металлоемкости сепаратора, повышение качества разделения неоднородной системы. 6 з.п. ф-лы, 2 ил.

Изобретение относится к очистке сжатого воздуха, в особенности от туманов, в различных отраслях народного хозяйства, преимущественно, на крупных компрессорных станциях со значительным суточным расходом сжатого воздуха. Фильтр для очистки воздуха содержит корпус с коническим днищем, выполненным с отверстием в нижней части, перфорированный металлический цилиндр, обтянутый проволочной сеткой с фильтрующим элементом, соединенный со штуцером вывода очищаемого воздуха и имеющий коническую насадку с радиальными канавками на внешней поверхности, штуцеры ввода очищаемого воздуха, выполненные в виде суживающихся дозвуковых сопел с криволинейными канавками на внутренней поверхности и имеющие со стороны входа металлические сетки, рубашку со штуцерами ввода и вывода сжатого воздуха, форсунки для обдува сжатым воздухом фильтрующего элемента, установленные на крышке корпуса, конденсатоотводчик, расположенный в отверстии днища, и отражательную перегородку, снабженную пористой пластиной. Фильтр выполнен в виде резонатора, при этом отражательная перегородка посредством шарнира подвижно укреплена в верхней части корпуса фильтра и разделяет внутреннюю полость его на камеры, сообщающиеся, соответственно, с перфорированным металлическим цилиндром и суживающимся дозвуковым соплом. Конденсатоотводчик через рычаг связан с отражательной перегородкой посредством жестко соединенной тяги. При этом поверхность пористой пластины отражательной перегородки со стороны штуцера ввода очищаемого воздуха и внутренние поверхности пор пластины покрыты наноматериалом, выполненным в виде стеклоподобной пленки. Техническим результатом является устранение коррозийного разрушения пористой пластины на отражательной перегородке. 2 ил.

Изобретение относится к массообменным устройствам роторной конструкции и может быть использовано в химической, нефтехимической, газовой, газоперерабатывающей и других отраслях промышленности для обработки газа жидкостью. Аппарат для обработки газа содержит корпус со штуцерами входа и выхода газа и жидкости, внутри которого на валу установлен фильтрующий барабан, выполненный в виде радиально расположенных металлических пластин, каждая из которых покрыта пористой пленкой, а корпус аппарата на 0,3-0,35 объема заполнен абсорбирующей жидкостью и имеет каплеуловители, установленные на одном уровне с осью вала. Штуцер входа газа имеет форму суживающегося сопла, на внутренней поверхности которого выполнены криволинейные канавки, продольно расположенные от входного к выходному отверстию суживающегося сопла. Наружная поверхность вала фильтрующего барабана выполнена с покрытием из наноматериала в виде стеклообразной пленки. Каплеуловитель выполнен в виде полусферы со смещением центральной оси в сторону внутренней боковой поверхности корпуса. У основания полусферы расположен желобообразный сборник каплеобразной абсорбирующей жидкости, соединенный с вертикальным каналом ее слива в днище корпуса. Технический результат: устранение аэродинамического сопротивления корпуса аппарата из-за «витания» жидкости, обеспечение постоянных энергозатрат на привод устройства подачи газа. 4 ил.
Наверх