Способ перекачки углеводородной жидкости по трубопроводу с насосной станцией с введением противотурбулентной присадки в трубопровод

Изобретение относится к трубопроводному транспорту жидкости и может быть использовано при перекачке углеводородных жидкостей по трубопроводам с насосными станциями с использованием противотурбулентных присадок. Способ включает введение противотурбулентной присадки во внутреннюю полость линейного участка трубопровода. Присадку вводят в подводящий трубопровод на входе в насосную станцию на отрезке длиной L=(τрастНПС)·v до входа в насосы, где τраст - время растворения присадки в перекачиваемом продукте, v - скорость течения перекачиваемой жидкости за местом ввода присадки, τНПС=VНПС/G - время пребывания присадки в объеме гидравлической системы VHnc от насосов до последнего места риска разрушения присадки, G - объемный расход перекачиваемого продукта. Техническим результатом заявленного изобретения является возможность одновременно исключить разрушение присадки на узлах насосной станции при вводе противотурбулентной присадки в полость трубы с низким давлением.

 

Изобретение относится к трубопроводному транспорту жидкости и может быть использован при перекачке углеводородных жидкостей по трубопроводам с насосными станциями с использованием противотурбулентных присадок.

Известно, что эффективность растворенной в перекачиваемом продукте противотурбулентной присадки полностью пропадает при прохождении продукта через насосы НПО. По этой причине в известных способах перекачки углеводородной жидкости противотурбулентную присадку всегда вводят в линейные участки трубопровода за предшествующими насосными станциями [Трубопроводный транспорт нефтепродуктов / И.Т.Ишмухаметов, С.Л.Исаев, М.В.Лурье, С.П.Макаров. - М.: Нефть и газ, 1999, с.224; Патент РФ №2124160, опубл. 27.12.1998]. Существенным недостатком этого известного и повсеместно применяемого способа является необходимость ввода присадки в полость трубы с высоким давлением. Высокое давление сильно усложняет конструкцию дозатора, повышая его стоимость, материалоемкость и энергоемкость, а также снижает надежность его работы.

Задачей изобретения является обеспечение возможности использования более простого и надежного оборудования для введения противотурбулентной присадки в трубопровод.

Техническим результатом изобретения является обеспечение возможности введения противотурбулентной присадки в полость трубы с низким давлением при одновременном исключении разрушения присадки на узлах насосной станции.

Технический результат достигается способом перекачки углеводородной жидкости по трубопроводу с насосной станцией, включающим введение противотурбулентной присадки во внутреннюю полость линейного участка трубопровода, характеризующимся тем, что присадку вводят в подводящий трубопровод на входе в насосную станцию на отрезке длиной L=(τрастнпс)·v до входа в насосы, где τраст - время растворения присадки в перекачиваемом продукте, v - скорость течения перекачиваемой жидкости за местом ввода присадки, τнпс=Vнпс/G - время пребывания присадки в объеме гидравлической системы Vнпс от насосов до последнего места риска разрушения присадки, G - объемный расход перекачиваемого продукта.

Известно, что не растворенная в продукте присадка не разрушается даже при достаточно высоких напряжениях сдвига, например, таких, которые возникают в дозаторах, вкачивающих присадку в полость трубопровода. Опыт показывает, что время растворения (τраст) введенной в перекачиваемый продукт присадки может достигать нескольких десятков минут. При существующих скоростях течения жидкости в подводящем трубопроводе (v) длину отрезка трубы (L) до насосной станции, на котором можно производить ввод присадки в трубопровод, можно определить по формуле:

,

где τраст - время растворения присадки в перекачиваемом продукте, v - скорость течения перекачиваемой жидкости в трубе за местом ввода присадки. При введении присадки на отрезке (L) присадка не успевает раствориться в жидкости, поэтому не происходит ее разрушения в насосах станции.

На практике отрезок (L) безопасного для разрушения в насосах места ввода присадки в трубопровод перед насосной станцией может составлять сотни метров.

На станции насосы не являются единственными агрегатами, где может происходить разрушение растворенной присадки с потерей ее эффективности. Гидравлические регуляторы, развилки, скачки диаметров труб, крутые изгибы труб, обычно присутствующие на насосных станциях, также могут приводить к частичной потере эффективности растворенной в продукте присадки. В том случае, когда места риска разрушения присадки располагаются за насосами на удалении, составляющем заметную долю от величины L, вычисленной по формуле (1), то в этом случае для определения места ввода присадки в трубопровод следует пользоваться формулой:

где τНПС=VНПС/G - время пребывания присадки в объеме гидравлической системы VНПС от насосов до последнего места риска разрушения присадки, G -объемный расход перекачиваемого продукта.

Ниже приведен пример осуществления способа.

Были проведены испытания противотурбулентной присадки марки «Коноко» на приеме Тихорецкой НПС-2. Присадку вводили перед насосами на расстоянии L, рассчитанном по формуле (2).

Измерение производительности нефтепровода (расхода, м3/час) до и после переключения места ввода присадки (перед насосами на расчетном расстоянии L и после насосов) показало, что изменения производительности нефтепровода, характеризующего изменение эффективности (разрушение) присадки, не наблюдалось. Не изменился также перепад давлений на концах опытного участка трубопровода при сохранении производительности.

Из этого можно сделать однозначный вывод, что эффективность присадки, впрыскиваемой на вход в НПС в течение времени полного заполнения присадкой опытного перегона, не отличалась от эффективности присадки, впрыскиваемой на выходе НПС.

Способ перекачки углеводородной жидкости по трубопроводу с насосной станцией, включающий введение противотурбулентной присадки во внутреннюю полость линейного участка трубопровода, характеризующийся тем, что присадку вводят в подводящий трубопровод на входе в насосную станцию на отрезке длиной L=(τрастНПС)·v до входа в насосы,
где τраст - время растворения присадки в перекачиваемом продукте;
v - скорость течения перекачиваемой жидкости за местом ввода присадки;
τНПС=VНПС/G - время пребывания присадки в объеме гидравлической системы VНПС от насосов до последнего места риска разрушения присадки;
G - объемный расход перекачиваемого продукта.



 

Похожие патенты:

Изобретение относится к нефтяной промышленности, а именно к суспензионно-эмульсионной композиции антитурбулентной добавки, используемой в процессах перекачки водонефтяных эмульсий по промысловым трубопроводам от добывающих скважин к установкам подготовки нефти и для энергосберегающего трубопроводного транспорта технической воды.

Изобретение относится к транспорту нефти и нефтепродуктов. .

Изобретение относится к транспорту нефти и нефтепродуктов и может быть использовано для улучшения подготовки к трубопроводному транспорту высоковязких и парафинистых нефтей путем снижения их вязкости.

Изобретение относится к способам получения антитурбулентных присадок в виде суспензий и может быть использовано в трубопроводном транспорте нефти и нефтепродуктов при перекачке их в турбулентном режиме течения.

Изобретение относится к текучим средам на нефтяной основе. .

Изобретение относится к теплоэнергетике и может быть использовано для определения толщины и плотности отложений в оборудовании химических, нефтехимических предприятий, а также тепловых, геотермальных, атомных энергоустановок.

Изобретение относится к методам неразрушающего контроля и предназначено для определения толщины отложений на внутренних поверхностях трубопроводов. .

Изобретение относится к трубопроводному транспорту жидкости и может быть использовано при перекачке углеводородных жидкостей по трубопроводам с насосными станциями с использованием противотурбулентных присадок
Изобретение относится к трубопроводной транспортировке жидких сред
Изобретение относится к трубопроводным системам, теплообменному оборудованию и позволяет улучшить гидродинамические и термодинамические характеристики поверхностей изделий из металлов и сплавов
Изобретение относится к способу подготовки газа и газового конденсата к трубопроводному транспорту

Изобретение относится к способу уменьшения адгезии газовых гидратов к внутренней поверхности тракта и сопутствующего оборудования, транспортирующих или перерабатывающих поток флюида при поисках и добыче нефти и газа, в нефтепереработке и/или нефтехимии, в результате снабжения внутренней поверхности тракта слоем покрытия, характеризующимся статическим краевым углом смачивания для покоящейся капли воды на слое покрытия, в воздухе, большим чем 75°, в условиях окружающего воздуха согласно измерению в соответствии с документом ASTM D7334-08, где упомянутый слой покрытия содержит алмазоподобный углерод (АПУ), содержащий доли одного или нескольких компонентов, выбираемых из группы, состоящей из кремния (Si), кислорода (О) и фтора (F). Техническим результатом изобретения является предотвращение закупоривания гидратами трубопровода для транспортирования природного газа без необходимости прибегать к ухудшению герметичности конструкции трубопровода. 3 н. и 12 з.п. ф-лы, 1 ил.

Изобретение относится к способу доставки природного газа потребителю. Способ включает получение газовых гидратов, их перемещение потребителю, разложение газогидрата с получением газа и характеризуется тем, что газогидрат получают в виде водогидратной пульпы с содержанием частиц газогидрата около 50% ее объема. При этом процесс получения газовых гидратов осуществляют при термодинамических параметрах, соответствующих образованию газогидрата, с отбором тепла от смеси природного газа и воды водоледяной пульпой, предпочтительно, с крупностью частиц не более 10 мкм, с содержанием частиц льда около 50% объема водоледяной пульпы, которые равномерно распределяют по объему реактора, перевозку газогидратной пульпы осуществляют в герметичных, теплоизолированных грузовых помещениях транспортного средства, при термодинамических параметрах, исключающих разложение газогидрата, причем разложение газогидратной пульпы с отбором газа, по завершению его перевозки, осуществляют снижением давления в грузовом помещении транспортного средства до атмосферного. При этом водоледяную пульпу, образовавшуюся в процессе разложения газогидратной пульпы, возвращают, с сохранением ее температуры, к месту получение газовых гидратов, где повторно используют при производстве водоледяной пульпы, пригодной для производства газогидрата. Использование настоящего изобретения позволяет снизить энергетические, капительные и текущие затраты на получение газового гидрата, а также снизить материалоемкость оборудования, необходимого для реализации способа. 1 з.п. ф-лы, 5 ил.

Изобретение относится к устройству для подготовки природного газа для транспортирования, включающему реактор, сообщенный с источником газа и воды, средство охлаждения смеси воды и газа и средство поддержания давления в реакторе не ниже равновесного, необходимого для гидратообразования. Устройство характеризуется тем, что в качестве реактора использован резервуар, рассчитанный на давление более 1 МПа, теплоизолированный с возможностью поддержания температуры на уровне 0,2°C, снабженный средством перемешивания материала. При этом в качестве средства охлаждения смеси воды и газа использована тонкодисперсная водоледяная пульпа, для чего устройство содержит вакуумный льдогенератор, выполненный в виде теплоизолированного резервуара, сообщенного с источником морской воды и вакуумным выходом турбокомпрессора, предпочтительно выполненного с возможностью создания в резервуаре разряжения, равного по величине давлению тройной точки морской воды. Причем выход льдогенератора сообщен с отделителем льда от рассола, ледовый выход которого сообщен со смесителем льда и пресной воды. В свою очередь источник природного газа сообщен с газовым входом реактора и газовой турбиной турбокомпрессора, выполненной с возможностью использования энергии газов, продуктов сжигания природного газа, а второй вход реактора посредством пульпопровода льдосодержащей пульпы, снабженного первым пульповым насосом, сообщен с накопителем льдосодержащей пульпы, выполненным в виде теплоизолированного резервуара. При этом гидратный выход реактора пульпопроводом гидратсодержащей пульпы сообщен с накопителем гидратсодержащей пульпы, выполненным в виде теплоизолированного резервуара, с возможностью поддержания давления не ниже равновесного, исключающего диссоциацию гидратсодержащего материала, с возможностью отгрузки из него гидратсодержащей пульпы, кроме того, водяной выход реактора сообщен со смесителем льда и пресной воды, при этом выход смесителя льда и пресной воды посредством пульпопровода льдосодержащей пульпы, снабженного вторым пульповым насосом, сообщен с накопителем льдосодержащей пульпы. Изобретение обеспечивает снижение энергозатрат на получения гидратов и снижение массо-габаритных характеристик комплекта оборудования, необходимого для получения гидратов. 3 з.п. ф-лы, 3 ил.

Изобретение относится к способу подготовки природного газа для транспортирования, включающий получение газовых гидратов путем смешения газа с водой в реакторе непрерывного охлаждения и поддержания требуемых температур полученной смеси с одновременным поддержанием давления не ниже равновесного, необходимого для гидратообразования. Способ характеризуется тем, что процесс получения газовых гидратов осуществляют при температуре +0,2°C и давлении 1 МПа, при этом для охлаждения смеси газа с водой используют водоледяную пульпу, предпочтительно, с крупностью частиц не более 10 мкм, которые равномерно распределяют по объему реактора, при этом содержание льда составляет около 50% ее объема. Использование настоящего изобретения позволяет снизить энергетические, капительные и текущие затраты на получение газового гидрата, а также снизить материалоемкость оборудования, необходимого для реализации способа. 2 з.п. ф-лы, 3 ил.

Группа изобретений относится к нефтяной промышленности, в частности к системам нефтепромыслового обустройства при разработке месторождений тяжелых нефтей и природных битумов. Обеспечивает повышение надежности работы систем обустройства за счет закачки пара, вырабатываемого из попутно добываемой воды, в пласт; частичного разрушения эмульсии в системе нефтесбора за счет ранней подачи деэмульгатора в продукцию скважин; выработки водяного пара из попутно добываемой воды за счет ее глубокой очистки от вредных примесей - нефти, сероводорода, кислорода, солей жесткости. Сущность изобретений: по 1 варианту система включает источник пресной воды с трубопроводом пресной воды, добывающие скважины, соединенные через трубопровод продукции скважин с установкой подготовки нефти, оснащенной трубопроводом товарной нефти и трубопроводом попутно добываемой воды, сообщенным с очистными сооружениями, которые через трубопровод очищенной воды, кустовую насосную станцию и водовод, оснащенный блоком дозирования ингибитора коррозии, сообщены с нагнетательными скважинами. Трубопровод продукции скважин оснащен блоком дозирования деэмульгатора, очистные сооружения снабжены трубопроводом уловленной нефти для ее возврата на установку подготовки нефти, оснащенную дополнительно системой нагрева продукции с трубопроводом топливного газа и трубопроводом попутного нефтяного газа, и вторым трубопроводом очищенной воды, соединенным с блоком водоподготовки для подачи попутно добываемой воды на глубокую очистку, при объемах добычи нефти более 10% от проектного максимального объема добычи нефти с отключением трубопровода очищенной воды. Причем блок водоподготовки соединен с трубопроводом пресной воды для ее глубокой очистки для обеспечения парогенератора необходимым объемом воды, а также с кустовой насосной станцией через трубопровод рассола и через трубопровод глубокоочищенной воды с парогенератором, который для нагрева воды соединен с трубопроводом топливного газа, а через паропровод сообщен с паронагнетательными скважинами. По 2 варианту добывающие скважины соединены через трубопровод продукции скважин и дожимную насосную станцию с установкой подготовки нефти. 2 н. и 4 з.п. ф-лы, 1 ил.

Изобретение относится к трубопроводному транспорту углеводородных газожидкостных смесей, в частности к способу сбора и трубопроводного транспорта многофазной продукции скважин. Способ включает замер, отбор на анализ поступившей из скважин углеводородной газожидкостной смеси и подачу в поток смеси в начале трубопровода композиции поверхностно-активных веществ, преобразующей многофазный многокомпонентный поток в псевдооднородную гомогенную пузырьковую систему, и состоящей из нефтерастворимого деэмульгатора и депрессатора или ингибитора парафиноотложений, взятых в массовом соотношении от 1:7 до 7:1. Указанную композицию вводят в количестве от 0,01 до 0,02 или от 0,2 до 0,5 масс.% от углеводородной составляющей жидкой фазы смеси. Техническим результатом является повышение эффективности транспортирования смеси. 7 табл.
Наверх