Непрерывно электрически управляемая линзовая антенна

Изобретение относится к устройствам, обеспечивающим управление шириной главного лепестка диаграммы направленности антенны без механического манипулирования антенной или ее частями. В линзовой антенне линзовый элемент выполнен из ферроэлектрического материала, антенна включает в себя: круглую пластину, выполненную из ферроэлектрического материала; электрод с высоким сопротивлением, расположенный на верхней поверхности указанной пластины из ферроэлектрического материала; сплошной электрически прозрачный резистивный электрод, расположенный на нижней поверхности указанной пластины из ферроэлектрического материала; первый электрод с высокой проводимостью, расположенный по центру на указанном электроде с высоким сопротивлением; второй электрод с высокой проводимостью, расположенный по краю указанного электрода с высоким сопротивлением; управляемый источник напряжения, связанный с первым и вторым электродами с высокой проводимостью. 14 з.п. ф-лы, 6 ил.

 

Изобретение относится к радиотехнике, в частности к непрерывно электрически управляемым линзовым антеннам, а именно к устройствам, обеспечивающим управление шириной главного лепестка диаграммы направленности антенны без механического манипулирования антенной или ее частями. В некоторых случаях необходимо изменить ширину диаграммы направленности, при этом антенна или ее части должны оставаться неподвижными. Это может быть необходимо, например, для осуществления переключения между всенаправленным режимом и узконаправленным режимом работы антенны.

Из уровня техники известны различные способы для электрического управления антенной. В основном, для этого используются антенные решетки, включающие элементы, фаза сигнала в которых может быть индивидуально установлена для осуществления контроля за направлением лепестка диаграммы направленности антенны.

Один из известных подходов к решению задачи описан в патенте США №5212583 [1]. Описанное в патенте [1] устройство, названное «электрооптической линзой» (см. Фиг.1), содержит ряд проводящих электродов 13, управляемых отдельными источниками напряжения, обеспечивающих формирование определенного коэффициента преломления ферроэлектрического материала 11 вдоль оси этого материала. Это дает возможность формирования эквивалентной вогнутой или выпуклой цилиндрической линзы, имеющей изменяющийся радиус кривизны. Изменяющимся радиусом кривизны управляют посредством контролируемого изменения напряжения, прикладываемого к каждому из электродов 13 по отдельности. Таким образом, решение [1] обеспечивает формирование ширины луча посредством ряда контролируемых источников напряжения, что серьезно усложняет систему и повышает ее стоимость при изготовлении.

Другим способом управления лепестком диаграммы направленности является применение так называемой «оптической фазированной решетки», которая включает в себя адаптивную линзу. Такой способ раскрыт в патенте США №6400328 [2], который выбран в качестве прототипа заявляемого решения. В указанном документе описано устройство (см. Фиг.2), в котором применяется пластина из материала, обладающего ферроэлектрическими свойствами, с обеих сторон которой расположены прозрачные для электромагнитных волн пленки с высоким сопротивлением. На двух противоположных краях резистивной пленки расположены проволочные электроды с высокой проводимостью, которые электрически соединены вдоль резистивной пленки. Данные пленки с высоким сопротивлением обеспечивают постоянный градиент напряжения вдоль ферроэлектрической пластины, и этот градиент и является причиной отклонения электромагнитного луча, проходящего через данную ферроэлектрическую пластину. Важно, чтобы указанные пленки с высоким сопротивлением были прозрачны для электромагнитного луча.

Следует отметить, что решение [2] обеспечивает только отклонение электромагнитного луча, проходящего через специальное устройство, не позволяя регулировать ширину луча.

Задача, на решение которой направлено заявляемое изобретение, заключается в разработке усовершенствованной конструкции электрически управляемой линзовой антенны, обеспечивающей возможность регулировки ширины луча при одновременном упрощении конструкции.

Технический результат достигается за счет создания непрерывно электрически управляемой линзовой антенны, линзовый элемент которой выполнен из ферроэлектрического материала, отличающейся тем, что антенна включает в себя:

круглую пластину, выполненную из ферроэлектрического материала;

электрод с высоким сопротивлением, расположенный на верхней поверхности указанной пластины из ферроэлектрического материала;

сплошной электрически прозрачный резистивный электрод, расположенный на нижней поверхности указанной пластины из ферроэлектрического материала;

первый электрод с высокой проводимостью, расположенный по центру на указанном электроде с высоким сопротивлением;

второй электрод с высокой проводимостью, расположенный по краю указанного электрода с высоким сопротивлением;

управляемый источник напряжения, соединенный с первым и вторым электродами с высокой проводимостью.

При функционировании заявляемой непрерывно электрически управляемой линзовой антенны управляемый источник напряжения способствует созданию управляющего электрического поля и распределения диэлектрической проницаемости вдоль радиуса указанной пластины из ферроэлектрического материала.

Для функционирования заявляемой непрерывно электрически управляемой линзовой антенны имеет смысл, чтобы второй электрод с высокой проводимостью имел кольцевую форму.

Для функционирования заявляемой непрерывно электрически управляемой линзовой антенны имеет смысл, чтобы сплошной прозрачный резистивный электрод представлял собой круглый электрод с высоким сопротивлением.

Согласно одному из вариантов осуществления заявляемого изобретения, сплошной прозрачный резистивный электрод представляет собой пленку с высоким сопротивлением.

Согласно одному из вариантов осуществления заявляемого изобретения, сплошной прозрачный резистивный электрод представляет собой круглую пленку с высоким сопротивлением, по краям которой дополнительно расположен кольцевой электрод с высокой проводимостью.

Согласно одному из вариантов осуществления заявляемого изобретения, электрод с высоким сопротивлением представляет собой прозрачную для электромагнитных волн пленку с высоким сопротивлением.

Для функционирования заявляемой непрерывно электрически управляемой линзовой антенны имеет смысл, чтобы указанный электрод с высоким сопротивлением и указанный непрерывный прозрачный резистивный электрод имели круглую форму.

Согласно одному из вариантов осуществления заявляемого изобретения, указанный сплошной прозрачный резистивный электрод электрически соединен посредством переключателя с первым электродом с высокой проводимостью.

Согласно такому варианту осуществления заявляемого изобретения нулевое управляющее напряжение, приложенное к первому и второму электродам с высокой проводимостью, будет обеспечивать диаграмму направленности, близкую к однородной в полусфере.

Согласно такому варианту осуществления заявляемого изобретения ненулевое управляющее напряжение, приложенное к первому и второму электродам с высокой проводимостью, будет обеспечивать узкую диаграмму направленности.

Согласно другому варианту осуществления заявляемого изобретения указанный сплошной прозрачный резистивный электрод электрически соединен посредством переключателя со вторым электродом с высокой проводимостью.

Согласно такому варианту осуществления заявляемого изобретения управляющее напряжение обеспечивает диаграмму направленности с уменьшенным коэффициентом направленности в центре диаграммы.

Для функционирования заявляемой непрерывно электрически управляемой линзовой антенны имеет смысл, чтобы ферроэлектрический материал представлял собой BaxSi1-xTiO3 керамический материал.

Предлагаемая непрерывно электрически управляемая линзовая антенна предназначена для использования, главным образом, в диапазоне миллиметровых волн.

Для лучшего понимания сущности изобретения далее приводится его подробное описание с соответствующими чертежами.

Фиг.1 - электрооптическая линза на основе ферроэлектрического материала согласно решению [1].

Фиг.2 - отклоняющая пластина на основе ферроэлектрического материала согласно решению [2].

Фиг.3 - распределение электрического поля в ферроэлектрической пластине, входящей в состав заявляемой антенны, приведенной на Фиг.4.

Фиг.4 - непрерывно управляемая линзовая антенна согласно изобретению.

Фиг.5 - диаграмма направленности (коэффициент направленного действия в дБ) при нулевом напряжении и при поданном на ферроэлектрический материал напряжении.

Фиг.6 - диаграмма направленности (коэффициент направленного действия в дБ) для обратного распределения (уменьшение коэффициента направленного действия в центре диаграммы).

Заявляемая непрерывно электрически управляемая линзовая антенна включает в себя круглую пластину 1 из ферроэлектрического материала, на верхней поверхности которой расположен электрод 6 с высоким сопротивлением, предпочтительно имеющий круглую форму (Фиг.4). Нижняя поверхность круглой пластины 1 из ферроэлектрического материала покрыта сплошным прозрачным для электромагнитных волн резистивным электродом 4, также предпочтительно имеющим круглую форму. На поверхности электрода 6 с высоким сопротивлением расположены электроды 2 и 3 с высокой проводимостью, электрически соединенные с контролируемым изменяющимся источником 5 напряжения. Электрод 2 с высокой проводимостью расположен в центре электрода 6 с высоким сопротивлением, а электрод 3 с высокой проводимостью, выполненный предпочтительно в форме кольца, расположен по краям электрода 6 с высоким сопротивлением.

Указанный электрод 6 с высоким сопротивлением предпочтительно выполняется прозрачным для электромагнитных волн, например, он может представлять собой электрически прозрачную пленку с высоким сопротивлением.

Указанный сплошной электрически прозрачный резистивный электрод 4 предпочтительно выполняется в виде пленки с высоким сопротивлением, имеющей круглую форму, по краям которой дополнительно расположен кольцевой электрод 10 с высокой проводимостью.

Указанный сплошной прозрачный резистивный электрод 4 предпочтительно соединяется с центральным электродом 2 с высокой проводимостью или кольцевым электродом 3 с высокой проводимостью при помощи переключателей 8 и 9 соответственно.

Материал пластины 1 был выбран исходя из того, что ферроэлектрические материалы, такие как, например, керамические материалы на основе BaxSi1-xTiO3, имеют сильную зависимость диэлектрической проницаемости от прикладываемого электрического поля. Толщина пластины 1 и ее диаметр подбираются в зависимости от используемого диапазона частот.

Непрерывно электрически управляемая линзовая антенна (Фиг.4) обеспечивает формирование луча за счет создания распределения диэлектрической проницаемости вдоль радиуса круглой пластины 1 из ферроэлектрического материала.

Управляемый источник 5 напряжения способствует созданию управляющего электрического поля и распределения диэлектрической проницаемости вдоль радиуса указанной пластины 1 из ферроэлектрического материала.

Для создания радиального распределения электрического поля, прилагаемого к ферроэлектрическому материалу, используют электрод 6 с высоким сопротивлением с одним центральным электродом 2 с высокой проводимостью и вторым электродом 3 с высокой проводимостью, расположенным по краю верхнего круглого электрода 6. Кроме того, нижняя поверхность ферроэлектрической пластины 1 покрыта сплошным прозрачным резистивным электродом 4, который может быть связан с центральным электродом 2 или кольцевым электродом 3 при помощи переключателей 8 и 9.

Распределение напряжения вдоль радиуса электрода 6 с высоким сопротивлением приведено на Фиг.3 для однородного распределения сопротивления электрода 6 с высоким сопротивлением и сплошного прозрачного резистивного электрода 4, электрически соединенного с электродом 2 с высокой проводимостью (положение, когда переключатель 8 включен). Изменяя посредством контролируемого источника 5 напряжение, приложенное к электродам 2 и 3 с высокой проводимостью, можно изменять диэлектрическую проницаемость пластины 1 из ферроэлектрического материала. В частности, возникает возможность обеспечивать однородное распределение диэлектрической проницаемости для широкой диаграммы направленности и центрально-симметричное распределение для формирования фокальной области и узконаправленной диаграммы направленности для источника 7 излучения радиосигнала, который помещен в фокальной области. Диаграмма направленности для обоих случаев приведена на Фиг.5, где пунктирная линия соответствует нулевому управляющему напряжению, а сплошная линия соответствует ненулевому управляющему напряжению на пластине 1 из ферроэлектрического материала. В первом случае диаграмма направленности близка к однородной (для полусферы), которая обеспечивает возможность соединения (взаимодействия) со всеми пользователями в этой полусфере, во втором случае становится возможным выбрать одно направление и затем ориентировать линзу для выбора определенного пользователя.

В случае обратного распределения (когда сплошной электрически прозрачный резистивный электрод 4 соединен с кольцевым электродом 3 с высокой проводимостью, переключатель 9 включен) становится возможным обеспечивать требуемую форму диаграммы направленности, например диаграмму с уменьшенным коэффициентом направленного действия (коэффициентом усиления) в центре (см. Фиг.6). Это может быть необходимо, например, для того чтобы подавить помехи от выбранных направлений.

Изобретение может быть использовано в антенных системах, преимущественно в диапазоне миллиметровых волн.

1. Непрерывно электрически управляемая линзовая антенна, линзовый элемент которой выполнен из ферроэлектрического материала, отличающаяся тем, что включает в себя:
круглую пластину, выполненную из ферроэлектрического материала;
электрод с высоким сопротивлением, расположенный на верхней поверхности указанной пластины из ферроэлектрического материала;
сплошной электрически прозрачный резистивный электрод, расположенный на нижней поверхности указанной пластины из ферроэлектрического материала;
первый электрод с высокой проводимостью, расположенный по центру на указанном электроде с высоким сопротивлением;
второй электрод с высокой проводимостью, расположенный по краю указанного электрода с высоким сопротивлением;
управляемый источник напряжения, связанный с первым и вторым электродами с высокой проводимостью.

2. Антенна по п.1, отличающаяся тем, что управляемый источник напряжения выполнен с возможностью поддержки управляющего электрического поля и распределения диэлектрической проницаемости вдоль радиуса указанной пластины из ферроэлектрического материала.

3. Антенна по п.1, отличающаяся тем, что второй электрод с высокой проводимостью имеет кольцевую форму.

4. Антенна по п.1, отличающаяся тем, что сплошной электрически прозрачный резистивный электрод представляет собой круглый электрод с высоким сопротивлением.

5. Антенна по п.1, отличающаяся тем, что сплошной электрически прозрачный резистивный электрод представляет собой пленку с высоким сопротивлением.

6. Антенна по п.1, отличающаяся тем, что сплошной электрически прозрачный резистивный электрод представляет собой круг, выполненный из пленки с высоким сопротивлением, по краям которой дополнительно расположен кольцевой электрод с высокой проводимостью.

7. Антенна по п.1, отличающаяся тем, что электрод с высоким сопротивлением представляет собой электрически прозрачную пленку с высоким сопротивлением.

8. Антенна по п.1, отличающаяся тем, что указанный электрод с высоким сопротивлением и указанный сплошной электрически прозрачный резистивный электрод имеют форму круга.

9. Антенна по любому из пп.1-8, отличающаяся тем, что указанный сплошной электрически прозрачный резистивный электрод электрически соединен посредством переключателя с первым электродом с высокой проводимостью.

10. Антенна по п.9, отличающаяся тем, что нулевое управляющее напряжение, приложенное к первому и второму электродам с высокой проводимостью обеспечивает диаграмму направленности, близкую к однородной в полусфере.

11. Антенна по п.9, отличающаяся тем, что ненулевое управляющее напряжение, приложенное к первому и второму электродам с высокой проводимостью, обеспечивает узкую диаграмму направленности.

12. Антенна по любому из пп.1-8, отличающаяся тем, что указанный сплошной электрически прозрачный резистивный электрод электрически соединен посредством переключателя со вторым электродом с высокой проводимостью.

13. Антенна по п.12, отличающаяся тем, что управляющее напряжение обеспечивает диаграмму направленности с уменьшенным коэффициентом направленности в центре диаграммы.

14. Антенна по п.1, отличающаяся тем, что ферроэлектрический материал представляет собой BaxSi1-хТiO3 керамический материал.

15. Антенна по п.1, отличающаяся тем, что выполнена с возможностью функционирования преимущественно в диапазоне миллиметровых волн.



 

Похожие патенты:

Изобретение относится к радиотехнической промышленности и может применяться в системах с фазированными антенными решетками (ФАР), использующими моноимпульсный метод пеленгации как самостоятельно, так и в качестве составной части более сложной системы.

Изобретение относится к радиотехнической промышленности и может применяться в системах с фазированными антенными решетками (ФАР), использующих моноимпульсный метод пеленгации.

Изобретение относится к радиотехнической промышленности и может использоваться в СВЧ антенной технике в составе фазированных антенных решеток, использующих моноимпульсный метод пеленгации.

Изобретение относится к моноимпульсным системам, предназначенным для использования в моноимпульсных антеннах в качестве облучателей. .

Изобретение относится к радиотехнической промышленности и может быть использовано в СВЧ антенной технике в составе антенных решеток различного назначения. .

Изобретение относится к области радиотехники СВЧ и КВЧ диапазонов и может быть использовано в радиолокационных системах с моноимпульсным методом пеленгации целей для облучения антенн апертурного типа.

Изобретение относится к области радиотехники СВЧ- и КВЧ-диапазонов, в частности к конструкциям моноимпульсных антенн, и может быть использовано в радиолокационных системах с моноимпульсным методом пеленгации целей как самостоятельно, так и в качестве облучателей антенн апертурного типа в виде фазированных антенных решеток, зеркальных и линзовых антенн, обеспечивающих приемопередающий режим работы.

Изобретение относится к радиолокации для использования в качестве как активной, так и пассивной фазированной антенной решетки (АФАР). .

Изобретение относится к волноводной СВЧ антенной технике и может быть использовано в составе распределительных систем для фазированных антенных решеток. .

Изобретение относится к радиотехнике, а именно к радиолокационным системам с моноимпульсным методом определения координат цели, и может быть использовано в антенных системах с фазированными антенными решетками (ФАР).

Изобретение относится к области радиотехники и может быть использовано в приемных и радиолокационных системах. Техническим результатом является сокращение скорости вращения облучателей. Для этого предлагается многолучевая зеркальная сканирующая антенна, содержащая зеркало, выполненное в форме радиопрозрачной сферы, внутренняя поверхность которой покрыта реверсивным материалом, облучатели, расположенные в фокальной сфере, а также источник управляющих сигналов, в которой два облучателя выполнены в форме окружностей, расположенных вертикально в фокальной сфере под углом 90° относительно друг другу, а сканирование в вертикальной области осуществляется от устройства управления, которое, например, может быть реализовано на базе ПЭВМ, через источник управляющих сигналов с привязкой по времени, при этом привязка по времени обеспечивает определение направления излучения по каждой точке сканирования в вертикальной плоскости. 5 ил.

Изобретение относится к радиотехнической промышленности и может использоваться в СВЧ-антенной технике в составе радиолокационных систем и комплексов. Технический результат состоит в расширении мгновенной полосы, увеличении разрешающей способности и возможности одновременного формирования до 8+2·2n (где n=1, 2, 3…) независимо управляемых лучей. Для этого двумерная моноимпульсная ФАР с электронным управлением лучом содержит панели излучателей, блоки фазовращателей и волноводную распределительную систему, состоящую из строчно-столбцовых делителей, каждый из которых разветвляет СВЧ-энергию в одном из квадрантов апертуры, а также СВЧ-сумматора, обеспечивающего формирование суммарно-разностных ДН, при этом каждый квадрант апертуры ФАР разбит на 4 части и в каждой этой части в ВРС выполнены распределитель-столбец и распределители-строки, обеспечивающие запитку отдельных излучающих элементов апертуры своей части без нарушения регулярности структуры всей ФАР. Для формирования нескольких независимо управляемых ДН каждый квадрант апертуры дополнительно разбит на 2n частей, причем распределители-столбцы в каждом квадранте в соседних частях объединены в пары, запитываемые вновь вводимыми балансными мостами и формирующие совместно с распределителями-строками в раскрыве ФАР подрешетки, количеством, равным числу пар, при этом каждый вновь вводимый балансный мост, запитывающий пару распределителей-столбцов, по одному из входов через суммирующее устройство, объединяющих аналогичные входы балансных мостов в каждом квадранте, соединен с СВЧ-сумматором, а по другому входу формирует независимый вход каждой подрешетки. 1 з.п. ф-лы, 1 ил.

Изобретение относится к элементам антенно-фидерного тракта, предназначенным для использования в качестве облучателей в моноимпульсных антеннах, в том числе в фазированных антенных решетках на основе двухмодовых ферритовых фазовращателей. Техническим результатом заявляемой моноимпульсной системы является уменьшение общих габаритных размеров моноимпульсной системы для применения ее в качестве облучателя однозеркальной антенной системы с дополнительным уменьшением шумов и потерь сигнала в волноводных трактах. Моноимпульсная система содержит приемную 1 и передающую 2 суммарно-разностные схемы деления (СРСД), двенадцать селекторов поляризации с перегородками, объединенных в узел 3 селекторов поляризации, двенадцать излучателей, объединенных в узел 4 излучателей, и три малошумящих усилителей 5, а также соответствующие связи между вышеуказанными частями моноимпульсной системы. В дополнительных пунктах формулы представлено конкретное выполнение моноимпульсной системы, ее частей и связей между частями моноимпульсной системы. 8 з.п. ф-лы, 5 ил.

Изобретение относится к радиоэлектронным системам сопровождения, в частности к следящим системам по направлению (измерителям углов и угловых скоростей линии визирования), в которых используется инерционный привод антенны, и может быть использовано для эффективного управления инерционными следящими системами по направлению в режиме сопровождения различных воздушных объектов, включая интенсивно маневрирующие. Технический результат - повышение точности и устойчивости сопровождения по направлению интенсивно маневрирующих объектов (ИМО). Для этого способ учитывает в законе управления угловую скорость линии визирования, ее первую и вторую производные, а также инерционные свойства привода антенны, при этом в способе в сигнале управления дополнительно учитываются скорость линии визирования, ее первая и вторая производные. 6 ил.

Использование: радиотехника, области антенной техники в диапазоне СВЧ-КВЧ, и предназначено для использования в системах радиосвязи, радиопеленга, радионаблюдения и радиомониторинга. Технический результат: выравнивание (по интенсивности) плотности потока мощности при покрытии заданной области ГУС на земной поверхности меньшим числом облучателей. Сущность изобретения: в способе отображают географические координаты (широты и долготы) точек, равномерно распределенных по области зоны гарантированного уровня сигнала (ГУС), в линейной системе геоцентрических координат, последовательно переводят линейные координаты области ГУС в систему линейных координат бортовой антенны, далее в азимут-угломестную систему координат антенны и отображении электромагнитных волн, распространяющихся от каждой из точек области ГУС на поверхности Земли в виде геометрооптических лучей (ГО-лучей) равной амплитуды, определяют парциальные диаграммы направленности (ДН) бортовой антенны в азимут-угломестной системе координат бортовой антенны, при этом плоскость раскрыва кластера облучателей, формирующего парциальные диаграммы излучения антенны, устанавливается ортогонально фокальной оси параболоида, формирующего зеркало антенны, а результирующий кластер формируют путем попадания ГО-лучей в пределы главного лепестка каждой из парциальных ДН антенны, а местоположение центрального облучателя формируемой области кластерной группы располагают в области, близкой к фокальной оси параболоида, а периферийные облучатели устанавливают так, что их ДН перекрывают оставшуюся часть проекций ГО-точек в азимут-угломестной системе координат антенны до полного формирования области ГУС. 10 ил.

Изобретение относится к области радиотехники и может быть применено в системах моноимпульсной радиолокации и радиопеленгации, использующих антенную решетку и цифровую обработку сигналов. Достигаемый технический результат изобретения - повышение точностных характеристик и быстродействия, вплоть до определения угла прихода сигнала по единственной его реализации. Для достижения технического результата по первому варианту способа, до приема сигналов осуществляют моделирование процесса их приема и обработки, при котором используют весовую функцию Хэмминга, обеспечивающую соответствующий уровень боковых лепестков и далее определяемого значения угла смещения, ширину рабочей зоны пеленгации не менее двукратной ширины диаграммы направленности парциального канала по уровню половинной мощности, в процессе моделирования определяют на основе весовой функции и параметров антенной решетки конкретный вид функций, параметрически зависящих от угла смещения, разлагают нечетную функцию, описывающую пеленгационную характеристику, по нечетным степеням текущего угла в ряд Маклорена, определяют предварительное значение угла смещения, вычисляют окончательное значение угла смещения, использованную при моделировании весовую функцию и определенное в результате моделирования значение угла смещения используют при формировании диаграмм направленности антенной решетки, получают значение сигнала рассогласования и вычисляют значение угла прихода сигнала источника радиоизлучения соответствующим образом. Для достижения технического результата по второму варианту определяют окончательное значение угла смещения как результат решения задачи, обеспечивающий соответствие пеленгационной характеристики кубической функции с отклонением только в седьмом и более высоких порядках разложения, далее использованную при моделировании весовую функцию и определенное в результате моделирования значение угла смещения используют при формировании диаграмм направленности антенной решетки, приеме и обработке сигнала, получая значение сигнала рассогласования, после чего вычисляют значение угла прихода сигнала источника радиоизлучения определенным образом. Примером реализации способов по первому и второму вариантам является обзорный моноимпульсный амплитудный суммарно-разностный пеленгатор с использованием антенной решетки и цифровой обработки сигналов, выполненный определенным образом. 3 н.п. ф-лы, 6 ил.

Изобретение относится к области радиолокации и предназначено для использования на летательных аппаратах. Техническим результатом изобретения является разработка средств многофункциональной бортовой радиолокационной станции, обеспечивающих обнаружение малоразмерных неподвижных наземных и надводных целей на фоне отражений от подстилающей поверхности. Амплитудный суммарно-суммарно-разностный способ (АССР) обужения приемной диаграммы направленности антенны заключается в том, что из суммы модулей сигналов, принятых суммарной приемной диаграммой направленности, вычитают модуль суммы сигналов, принятых диаграммой обужения. Многофункциональная радиолокационная станция для летательных аппаратов содержит цифровую фазированную антенную решетку (ЦФАР), формирующую суммарную приемо-передающую диаграмму направленности и суммарную диаграмму направленности обужения, передающее устройство, приемное устройство, задающий генератор, синтезатор частот-синхронизатор, цифровой процессор данных, цифровой процессор сигналов, включающий в себя устройство обужения, блок управления лучом (БУЛ) и индикатор, а также необходимые связи между ними. 2 н.п. ф-лы, 6 ил.

Изобретение относится к радиотехнической промышленности и может применяться в радиолокационных системах с частотно-сканирующими антенными решетками, использующих моноимпульсный метод пеленгации для повышения точности измерения угловых координат воздушных объектов. Моноимпульсная волноводная антенная решетка с частотным сканированием состоит из суммарно-разностной волноводной диаграммообразующей схемы (4) и линейных излучателей (1, 2, 3…N), запитка излучателей производится через Т-щелевые направленные ответвители (7), которые включены между изогнутыми волноводными участками специальной конфигурации - петлями (8), соединенными последовательно и образующими свернутые в Е-плоскости короткую (5) и длинную (6) линии задержки. Выбор длин волноводных петель линий задержки производится с учетом зависимости фазы направленных ответвителей от величины переходного ослабления. Короткая и длинная линии задержки диаграммообразующей схемы запитаны через двухканальный волноводный фазовращатель (18) от волноводного мостового устройства с регулируемым коэффициентом деления (10), состоящего из 2-х направленных ответвителей (11) с переходным ослаблением 3 дБ и включенного между ними перестраиваемого фазовращателя (12). Два излучателя (N/2) и (N/2-1), расположенные в центре антенны, а также два излучателя (N) и (N-1) запитаны от крайних направленных ответвителей короткой и длинной линий задержки через выходные двухканальные волноводные фазовращатели (16) и (17). Технический результат заключается в обеспечении низкого уровня боковых лепестков диаграммы направленности суммарного канала в плоскости частотного сканирования, повышении точности определения угловой координаты в плоскости частотного сканирования и достижении минимального различия уровней сигналов в максимумах диаграммы направленности разностного канала во всем рабочем диапазоне частот. 2 з.п. ф-лы, 4 ил.

Изобретение относится к области радиотехники и может быть использовано при разработке и изготовлении статичных антенных систем спутниковых и радиорелейных линий связи, а также приемных антенных систем радиолокационных станций. Техническим результатом является создание антенной системы без механических подвижных элементов и расширение функциональных возможностей, в части различных режимов работы. Предложена статичная антенная система, выполненная в виде двух сфер (зеркало и облучатель) из радиопрозрачного материала, покрытого изнутри реверсивным материалом. Под воздействием управляющих сигналов формируется апертура зеркала антенны и форма облучателя. 1 ил.

Изобретение относится к области радиолокации и может быть использовано в радиолокационных станциях (РЛС). Достигаемый технический результат - обеспечение электронного сканирования лучом фазированной антенной решетки (ФАР) в азимутально-угломестном секторе для РЛС с одномерным электронным сканированием при остановке вращения антенны в азимутальной плоскости. Технический результат достигается тем, что в способе радиолокационного обзора пространства, заключающемся в электронном и механическом сканировании лучом фазированной антенной решетки по углу места и механическом по азимуту, изменяют плоскость электронного сканирования ФАР путем вращения или качания ФАР вокруг оси, перпендикулярной ее плоскости, с возможностью обеспечения электронного сканирования лучом ФАР в азимутально-угломестном секторе для РЛС с одномерным электронным сканированием при остановке вращения или качания антенны в азимутальной плоскости. 1 ил.
Наверх