Ультразвуковой распылитель

Изобретение относится к области ультразвуковой техники, а именно к устройствам для мелкодисперсного распыления жидкостей, и может быть использовано в наноиндустрии, химико-фармацевтической и медицинской промышленности. Ультразвуковой распылитель содержит пьезоэлектрический преобразователь с концентратором, заканчивающимся инструментом с конусной распылительной поверхностью, в котором выполнены каналы, соединенные с осевым каналом для подачи распыляемой жидкости. Центры каналов равномерно расположены на окружностях, количество которых N определяется из условий обеспечения заданной формы формируемого факела и производительности процесса

где R - радиус основания конусной распылительной поверхности, R0 - радиус поверхности, покрываемой жидкостью, вытекающей из одного отверстия, γ - угол при вершине конусной распылительной поверхности. Диаметры окружностей выбираются из условия

где i=0…N - номер окружности. На каждой из окружностей выполняется каналов. Техническим результатом изобретения является повышение эффективности процесса распыления. 3 ил.

 

Изобретение относится к области ультразвуковой техники, а именно к устройствам для мелкодисперсного распыления жидкостей, и может быть использовано в наноиндустрии, химико-фармацевтической и медицинской промышленности.

Свойство ультразвуковых колебаний высокой интенсивности распылять жидкости в газовой среде широко применяется для получения различных аэрозолей при интенсификации тепло- и массообменных процессов в распылительной сушке, при нанесении тонких слоев лекарственных веществ (микродоз) или защитных слоев на грануляты, спансулы, таблетируемый материал, при получении монодисперсных гранул, распылении расплавов химических веществ, изготовлении мельчайших порошков и т.п. Ультразвуковое распыление жидкостей используется в медицине для создания лечебных аэрозолей.

Ультразвуковые распылители аэрозолей имеет ряд преимуществ перед устройствами химического (конденсационного) и механического (дисперсионного) распыления, так как позволяют значительно интенсифицировать процесс, улучшить качество продукта при меньших габаритных размерах и стоимости. При этом устройства обеспечивают формирование монодисперсного и однородного по составу факела распыления с заданным размером формируемых капель при высокой концентрации аэрозоля.

Механизм ультразвукового распыления жидкостей заключается в воздействии механическими колебаниями ультразвуковой частоты на пленку жидкости, при этом распыление осуществляется за счет отрыва капелек жидкости с гребней образующихся стоячих капиллярных волн.

Эффективность процесса ультразвукового распыления определяется главным образом толщиной и равномерностью пленки распыляемой жидкости. Для создания пленки на колеблющейся распылительной поверхности используют различные способы подачи жидкости, наиболее распространенным из которых является выполнение сквозного осевого канала в ультразвуковой колебательной системе распылителя [1].

Основными недостатками известного ультразвукового распылителя является малая ширина факела распыла и ограниченная производительность процесса, обусловленная малой площадью растекания распыляемой жидкости по колеблющейся поверхности (вокруг отверстия выхода канала на распылительную поверхность образуется «пятно» диаметром не более 5 мм). Это объясняется тем, что при выходе из канала на колеблющуюся поверхность жидкости сообщается значительное ускорение, приводящее к ее распылению. Жидкость не успевает растечься по всей распылительной поверхности. Увеличение расхода жидкости также не приводит к желаемым результатам, поскольку жидкость начинает вытекать из отверстия, не подвергаясь распылению. Указанные недостатки приводят к невозможности создания высокопроизводительных ультразвуковых распылителей с большой поверхностью распыления.

Возможным путем устранения указанных недостатков является применение в конструкции ультразвукового распылителя дополнительных элементов для подачи сжатого воздуха, предназначенных для формирования факела распыла с необходимыми геометрическими характеристиками [2]. Однако это не позволяет устранить второй недостаток, связанный с малой производительностью распыления. Кроме того, во многих случаях применение воздушных потоков для формирования факела недопустимо техническим регламентом процесса (загрязнение покрытий).

Наиболее полно недостатки известных устройств устранены в ультразвуковом распылителе, принятом за прототип [3], содержащем пьезоэлектрический преобразователь, концентратор, заканчивающийся инструментом с конусной распылительной поверхностью, в котором выполнены каналы, соединенные с осевым каналом для подачи распыляемой жидкости.

Выполнение распылительной поверхности в виде конуса и наличие дополнительных каналов позволяет обеспечить более равномерное покрытие жидкостью распылительной поверхности на большей площади.

Устройство, принятое за прототип, позволяет осуществлять распыление с увеличенной производительностью и диаметром факела распыла, однако характеризуется рядом существенных недостатков:

1. Невозможностью формирования факела распыления с заданными геометрическим характеристиками, поскольку прототип не позволяет установить взаимосвязь между углом при вершине конусной распылительной поверхности и диаметром формируемого факела распыла

2. Невозможностью осуществления процесса распыления с заданной производительностью и равномерностью формируемого факела, поскольку известный распылитель не обеспечивает оптимального размещения отверстий для подачи жидкости на поверхность распыления.

Таким образом, устройство, принятое за прототип, не позволяет реализовать процесс распыления с максимальной эффективностью.

В предлагаемом ультразвуковом распылителе, содержащем пьезоэлектрический преобразователь, концентратор, заканчивающийся инструментом с конусной распылительной поверхностью, в котором выполнены каналы, соединенные с осевым каналом для подачи распыляемой жидкости, центры каналов равномерно расположены на окружностях, количество которых N определяется из условий обеспечения заданной формы формируемого факела и производительности процесса

где R - радиус основания конусной распылительной поверхности, R0 - радиус поверхности, покрываемой жидкостью, вытекающей из одного отверстия, γ - угол при вершине конусной распылительной поверхности, при этом диаметры окружностей выбираются из условия

где i=0…N - номер окружности, и на каждой окружности выполняется

каналов.

В предлагаемом техническом решении задача повышения эффективности процесса распыления решается за счет:

- выбора оптимального угла при вершине распылительной поверхности, обеспечивающего формирования факела распыла заданного диаметра;

- оптимального расположения отверстий каналов для подачи жидкости, обеспечивающего равномерное покрытие распылительной поверхности слоем жидкости.

Сущность предложенного технического решения заключается в следующем. В предложенном ультразвуковом распылителе жидкость, вытекающая из отверстия на колеблющейся распылительной поверхности, будет растекаться по вполне определенной, конечной площади этой поверхности, имеющей форму круга. Было установлено, что значение радиуса круга R0, по которому растекается жидкость, зависит от производительности подачи этой жидкости.

Сущность изобретения поясняется фиг.1, фиг.2 и фиг.3.

На фиг.1 представлена зависимость радиуса растекания жидкости R0 от производительности ее подачи на распылительную поверхность, полученная экспериментально.

На фиг.2,а показан пример наиболее часто используемой распылительной поверхности, выполненной виде конуса радиусом R с углом при вершине γ.

Жидкость, вытекающая из центрального канала обеспечит покрытие распылительной поверхности на расстоянии, не превышающем R0 от центрального отверстия. Для покрытия жидкостью оставшейся площади распылительной поверхности требуется выполнение дополнительных отверстий. Предложено выполнять эти отверстия на расстоянии 2R0 друг от друга вдоль образующей конуса (см. фиг.2, б). Поскольку распылительная поверхность, как правило, выполняется в виде конуса, то наиболее рациональным является размещение дополнительных отверстий (помимо центрального отверстия, выполненного в вершине конуса) на окружностях (см. фиг.2, в).

На фиг.2,г показано, что радиус этих окружностей будет увеличиваться на с каждой новой окружностью, расположенной далее от центра конуса.

Количество окружностей рассчитывается таким образом, чтобы они располагались на расстоянии 2R0 друг от друга и на расстоянии R0 от внешнего края. При известном радиусе распылительной поверхности R длина образующей конуса будет равна . Тогда количество окружностей, которые можно разместить вдоль такой образующей конуса, будет равно или, переходя к общему знаменателю,

Если полученное значение не является целочисленным, то его округляют до ближайшего целого значения и уточняют значение R0, следовательно

Радиус каждой из окружностей будет равен

где i=0…N - номер окружности.

Центры отверстий каналов для подачи жидкости на каждой из окружностей также равномерно располагаются на расстоянии 2R0 друг от друга по длине окружности. Количество каналов на каждой окружности выбирается

где i=0…N - номер окружности.

Угол при вершине конусной поверхности выбирается исходя из необходимого диаметра формируемого факела распыла.

На фиг.3 приведена зависимость отношения диаметра формируемого факела распыла к диаметру распылительной поверхности от угла при вершине распылительной поверхности.

Предлагаемое техническое решение используется в серии ультразвуковых распылителей, разработанных ООО «Центр ультразвуковых технологий АлтГТУ».

Литература

1. Хмелев, В.Н. Ультразвуковое распыление жидкостей [Текст]. / В.Н.Хмелев, А.В.Шалунов, А.В.Шалунова - Барнаул АлтГТУ, 2010. - 272 с.

2. Ultrasound Company [Electronic resource]. - Sono-Tek Corporation. - Режим доступа: http://www.sono-tek.com/.

3. Патент США №4659014 (прототип).

Ультразвуковой распылитель, содержащий пьезоэлектрический преобразователь, концентратор, заканчивающийся инструментом с конусной распылительной поверхностью, в котором выполнены каналы, соединенные с осевым каналом для подачи распыляемой жидкости, отличающийся тем, что центры каналов равномерно расположены на окружностях, количество которых N определяется из условий обеспечения заданной формы формируемого факела и производительности процесса
где R - радиус основания конусной распылительной поверхности, R0 - радиус поверхности покрываемой жидкостью, вытекающей из одного отверстия, γ - угол при вершине конусной распылительной поверхности, при этом диаметры окружностей выбираются из условия где i=0…N номер окружности и на каждой окружности выполняется каналов.



 

Похожие патенты:

Изобретение относится к химической, микроэлектронной и другим отраслям промышленности и может быть использовано для построения ультразвуковых распылителей. .

Изобретение относится к области ультразвуковой техники, а именно к устройствам для мелкодисперсного распыления (диспергирования) жидкостей, и может быть использовано в наноиндустрии, химико-фармацевтической и медицинской промышленности.

Изобретение относится к устройствам для распыления жидкости. .

Изобретение относится к биотехнологии, медицине, парфюмерной промышленности, к производству лекарственных и биологически активных веществ. .

Изобретение относится к устройствам для распыления жидкостей, в частности воды и водных растворов, используемых при тушении пожаров в закрытых помещениях, может быть применено и для целого ряда производственных процессов.

Изобретение относится к технике мокрого пылеулавливания и может применяться в различных отраслях промышленности для очистки запыленных газов. .

Изобретение относится к технике мокрого пылеулавливания и может применяться в различных отраслях промышленности для очистки запыленных газов. .

Изобретение относится к технике мокрого пылеулавливания и может применяться в различных отраслях промышленности для очистки запыленных газов. .

Изобретение относится к технике мокрого пылеулавливания и может применяться в химической, текстильной, пищевой, легкой и других отраслях промышленности для очистки запыленных газов.

Изобретение относится к средствам распыливания жидкостей и растворов и может применяться в двигателестроении, химической и пищевой промышленности. Акустическая вихревая форсунка содержит корпус, элементы для подвода жидкости и воздуха, корпус состоит из двух соосных, связанных между собой цилиндрических втулок: втулки большего диаметра и втулки меньшего диаметра, при этом внутри втулки меньшего диаметра, соосно ей, расположен шнек, жестко связанный с ее внутренней поверхностью, причем внешняя поверхность шнека представляет собой винтовую канавку, образующую с внутренней поверхностью втулки меньшего диаметра винтовую внешнюю полость, а внутри шнека выполнено отверстие с винтовой нарезкой, соединенное с трубкой для подвода жидкости под давлением, а во втулке большего диаметра, соосно ей, расположена фасонная втулка, внутренняя поверхность которой образована конической и цилиндрической поверхностями, и которая жестко закреплена во втулке большего диаметра через герметизирующую прокладку, имеющую, по крайней мере, одно дроссельное отверстие, и образующую с торцевой поверхностью шнека и внутренней поверхностью втулки меньшего диаметра - цилиндрическую камеру, которая посредством канала соединена с источником сжатого воздуха, а в цилиндрической полости фасонной втулки расположен свободный конец трубки для подвода жидкости, размещенный в коаксиальном упругом кольце, которое с герметизирующей прокладкой образует коническую резонансную камеру, при этом дроссельное отверстие выполняет функцию горловины резонатора «Гельмгольца». Технический результат повышение эффективности распыления жидкости. 2 з.п. ф-лы, 1 ил.

Изобретение может быть использовано в химической промышленности для получения сорбентов и носителей катализаторов, в порошковой металлургии, а также в фармацевтике при получении носителей для активных ингредиентов и инкапсулированных препаратов. В установке для получения ультрадисперсных порошков ультразвуковая форсунка расположена в нижней части сушильной камеры. Выходной патрубок форсунки находится выше газораспределительной пластины, имеющей большую плотность отверстий вблизи форсунки и меньшую - вблизи стенок камеры. Вход форсунки сообщен со шприцевым насосом для подачи исходного сырья и с перистальтическим насосом для подачи воды в качестве охлаждающего агента. Ниже газораспределительной пластины расположен входной патрубок для сушильного агента, сообщенный с выходом теплообменника-калорифера, вход которого подключен к выходу адсорбционного осушителя. Осушитель сообщен через магистральный фильтр с компрессором. Верхняя часть сушильной камеры посредством соединительного патрубка связана с циклоном, сообщенным в свою очередь с электрофильтром. Техническим результатом изобретения является упрощение конструкции за счет исключения низкотемпературного, криогенного и специального оборудования, расширение ассортимента получаемых в ней порошков и функционирование в непрерывном режиме. 1 з.п. ф-лы, 5 ил.

Изобретение относится к медицинской технике, в частности к ингаляторам, в которых лекарственное средство в емкости с плоской нижней частью переводится в аэрозольное состояние при помощи вибрационного пьезоэлектрического преобразователя. Сущность: в преобразователь выдают сигнал, имеющий форму волны, содержащей два синусоидальных сигнала на двух частотах, соответствующих основной резонансной частоте и дополнительной резонансной частоте, для создания колебаний на двух или более различных частотах, включая основную резонансную частоту преобразователя и по меньшей мере одну дополнительную резонансную частоту преобразователя. Технический результат - повышение степени дезагрегации, повышение эффективности за счет снижения трения. 4 н. и 10 з.п. ф-лы, 5 ил.

Изобретение относится к средствам распыливания жидкостей и растворов и может применяться в двигателестроении, химической и пищевой промышленности. Акустическая вихревая форсунка содержит корпус и элементы для подвода жидкости и воздуха, корпус состоит из двух соосных, связанных между собой цилиндрических втулок: втулки большего диаметра и втулки меньшего диаметра, при этом внутри втулки меньшего диаметра, соосно ей, расположен шнек, жестко связанный с ее внутренней поверхностью, причем внешняя поверхность шнека представляет собой винтовую канавку, образующую с внутренней поверхностью втулки меньшего диаметра винтовую внешнюю полость, а внутри шнека выполнено отверстие с винтовой нарезкой, соединенное с трубкой для подвода жидкости под давлением, а во втулке большего диаметра, соосно ей, расположена фасонная втулка, внутренняя поверхность которой образована конической и цилиндрической поверхностями и которая жестко закреплена во втулке большего диаметра через герметизирующую прокладку, имеющую, по крайней мере, одно дроссельное отверстие и образующую с торцевой поверхностью шнека и внутренней поверхностью втулки меньшего диаметра цилиндрическую камеру, которая посредством канала соединена с источником сжатого воздуха, а в цилиндрической полости фасонной втулки расположен свободный конец трубки для подвода жидкости, размещенный в коаксиальном упругом кольце, которое с герметизирующей прокладкой образует коническую резонансную камеру, при этом дроссельное отверстие выполняет функцию горловины резонатора «Гельмгольца», к торцевой части втулки меньшего диаметра корпуса прикреплен диффузор, на срезе которого установлен рассекатель потока жидкости, выполненный в виде перфорированного кольца, соосного с диффузором. Технический результат - повышение эффективности распыления жидкости. 1 ил.

Изобретение относится к устройствам, предназначенным для распыления жидкостей и растворов, может быть использовано для работы в устройствах распылительной сушки, а также в различных отраслях пищевой, фармацевтической, нефтяной и химической промышленности и позволяет повышение эффективности распылителя за счет создания условий для разделения по размеру частиц распыленной жидкости. В ультразвуковом распылителе жидкостей ультразвуковой излучатель установлен на дне смесительной камеры. Патрубок транспортирующего газа расположен в верхней части камеры и снабжен вентилятором. Патрубок подвода жидкости расположен в нижней части камеры. Выходной патрубок для отбора золя распыляемой жидкости расположен в верхней части камеры напротив патрубка транспортирующего газа. Выходной патрубок снабжен ограничительной пластиной, повторяющей конфигурацию сечения патрубка и установленной в нижней его части с возможностью регулирования пластины по высоте относительно потока золя. Техническим результатом изобретения является повышение эффективности распылителя за счет создания условий для разделения по размеру частиц распыленной жидкости для дальнейшей ее сушки с получением готового продукта в виде порошка с однородной дисперсией 1-4 мкм. 2 ил.

Изобретение относится к средствам распыливания жидкостей, растворов и может быть использовано в сельскохозяйственной, пищевой и легкой промышленности. В акустическом распылителе к резонаторному диску со стороны, противоположной полостям глухих отверстий, посредством винта крепится рассекатель, выполненный в виде перфорированного диска. К периферийной части диска соосно резонаторному диску прикреплена перфорированная цилиндрическая обечайка. Перфорированный диск размещен во внутренней полости обечайки. Техническим результатом изобретения является повышение эффективности распыления и надежности работы. 2 ил.

Изобретение относится к ультразвуковой технике, в частности к распылителям жидкостей, и может быть использовано для распыления воды, суспензий, лекарственных препаратов и агрессивных жидкостей. Распылитель содержит корпус, пьезопреобразователь в качестве источника колебаний и распыляющий узел в виде упругой пластины. Пластина одним из краев консольно прикреплена к пьезопреобразователю и частично погружена противоположным свободным краем в распыляемую жидкость. Техническим результатом изобретения является упрощение конструкции распылителя жидкости и увеличение производительности распыления. 2 ил.

Изобретение относится к устройству для создания пульсирующей струи текучей среды из подвергнутой воздействию давлением текучей среды и может быть использовано для обработки посредством газопламенного напыления или плазменного напыления и/или электродугового напыления поверхности заготовки. Кроме того, устройство может быть использовано для снятия грата с заготовки, и/или удаления грязи с заготовки, и/или для удаления слоев с заготовки. Устройство также может быть применено для воздействия на поверхность заготовки с помощью текучей среды в форме моющей щелочи, и/или воды, и/или эмульсии, прежде всего водно-масляной эмульсии, и/или масла. Кроме того, устройство может быть использовано для уплотнения поверхности заготовки путем воздействия на поверхность заготовки с помощью текучей среды, прежде всего с помощью воды. Устройство содержит систему трубопроводов, которая содержит по меньшей мере одно сопло, которое имеет устье сопла, из которого может выходить пульсирующая струя текучей среды из подвергнутой воздействию давлением текучей среды. Устройство имеет камеру, в которой выполнено устройство создания волн давления для создания волн давления текучей среды. Камера сообщается с системой трубопроводов через выпускное отверстие для созданных волн давления текучей среды. Устройство также содержит регулировочное устройство для управления амплитудой волн давления текучей среды в системе трубопроводов по меньшей мере перед одним устьем сопла. С помощью регулировочного устройства может быть отрегулировано образованное из частного длины пути для волн давления текучей среды между выпускным отверстием камеры и по меньшей мере одним устьем сопла по меньшей мере одного сопла в системе трубопроводов и длины волны волн давления в системе трубопроводов число Гельмгольца Не:=L/λ. В установке имеется резервуар для заготовок, в котором предусмотрена возможность воздействия на заготовки пульсирующей струей текучей среды. В установке, кроме того, имеется устройство сбора текучей среды, которое соединено с нагнетательным насосом для возврата собранной текучей среды в устройство для создания струи. В способе обработки стенок отверстия в заготовке с помощью устройства для создания струи стенку отверстия обрабатывают из сопла с помощью пульсирующей струи текучей среды высокого давления. Сопло относительно заготовки вращательно перемещают вокруг оси отверстия и поступательно перемещают в направлении оси отверстия. В способе улучшения участка заготовки на участок заготовки наносят покрытие поверхности, при котором на втором этапе покрытие обрабатывают посредством пульсирующей струи текучей среды высокого давления. Техническим результатом группы изобретений является улучшение участков заготовок за счет уплотнения путем воздействия на них пульсирующей струи текучей среды. 5 н. и 20 з.п. ф-лы, 12 ил.

Изобретение относится к средствам распыливания жидкостей, растворов и может быть использовано в двигателестроении, химической, пищевой и легкой промышленности. Акустическая форсунка с распылительным диффузором содержит корпус с размещенным внутри генератором акустических колебаний в виде сопла и резонатора, трубок для подвода воздуха и жидкости, корпус выполнен в виде вертикально расположенной цилиндрической втулки, в верхней части которой расположена трубка для подвода воздуха, а перпендикулярно ее оси расположена трубка для подвода жидкости, причем внутри корпуса, соосно ему, жестко закреплена втулка с верхним и нижним фланцами, при этом нижний фланец жестко зафиксирован в проточке, выполненной в корпусе, а внутри втулки, соосно ей, расположен кольцевой объемный резонатор, выполненный в виде чашки с конической поверхностью, при этом чашка запрессована на стержне диаметром d резонатора, а в его хвостовой части расположены фиксирующие диски, выполненные в виде упругих лепестков, взаимодействующих с внутренней поверхностью втулки, а в нижнем фланце расположено по крайней мере одно сопло под углом к оси резонатора, величина которого лежит в следующем интервале величин 20°÷40°, при этом продолжение оси сопла лежит на окружности, находящейся в средней части конической поверхности резонатора, к нижней части корпуса форсунки соосно прикреплен внешний диффузор распылителя, а к торцевой поверхности стержневого газоструйного излучателя в виде резонатора прикреплен внутренний перфорированный диффузор, таким образом, что выходные сечения внешнего и внутреннего диффузоров лежат в одной плоскости, перпендикулярной оси газоструйного излучателя. Технический результат - повышение эффективности распыления. 1 ил.

Изобретение относится к средствам распыливания жидкостей, растворов и может быть использовано в двигателестроении, химической, пищевой и легкой промышленности. Акустическая форсунка содержит корпус с размещенным внутри генератором акустических колебаний в виде сопла и резонатора, трубки для подвода воздуха и жидкости, корпус выполнен в виде стакана с днищем, в корпусе выполнена цилиндрическая полость для подвода жидкости через трубку, расположенную в крышке, в верхней части которой расположен крепежный, фиксирующий верхнюю часть стержня стрежневого газоструйного излучателя в сопле, выполненном в крышке, а верхняя часть стержня шарнирно соединена с нижней частью излучателя в крышке посредством, по крайней мере, одного фиксирующего диска, выполненного в виде, по крайней мере, трех упругих лепестков, взаимодействующих с внутренней поверхностью конического отверстия крышки, а между отверстием в днище корпуса и внешней поверхностью сопла крышки выполнен щелевой канал, по которому поступает жидкость, а между внутренней поверхностью конического отверстия и внешней поверхностью нижней части стержня выполнен кольцевой канал, по которому поступает распыливающий агент. К нижней части корпуса форсунки соосно прикреплен внешний диффузор распылителя, а к конической поверхности стержневого газоструйного излучателя Гартмана прикреплен внутренний перфорированный диффузор, таким образом, что выходные сечения внешнего и внутреннего диффузоров лежат в одной плоскости, перпендикулярной оси газоструйного излучателя. Технический результат - повышение эффективности распыления. 1 ил.
Наверх