Способ получения и предварительной обработки сигнала шума порыва трубопровода для проведения акустико-корреляционной диагностики

Изобретение относится к технике контроля трубопроводных систем и может быть использовано для обнаружения мест порывов в трубопроводе. На обе крайние точки исследуемого участка трубопровода устанавливают парно по два сейсмографа с фиксированным интервалом. Акустические волны от порыва, проходя по трубопроводу в обе стороны, достигают сначала ближних к диагностируемому участку сейсмографов, потом дальних сейсмографов. Для выделения волн, исходящих от порыва со стороны исследуемого участка и гашения фоновых шумов, придают временную задержку сигналу с ближних сейсмографов на время опережения относительно дальних сейсмографов. С помощью смесителя производят сложение двух сигналов с парных сейсмографов в один и с помощью корреляционного течеискателя проводят обработку двух полученных с каждого края диагностируемого участка трубопровода сигналов. Техническим результатом заявленного изобретения является улучшение качества диагностики за счет увеличения длины диагностируемого участка трубопровода или уменьшения минимального шумового порога утечки. 1 ил.

 

Изобретение относится к технике контроля трубопроводных систем и может быть использовано для обнаружения мест порывов в трубопроводе.

Одним из распространенных способов обнаружения порыва в трубопроводе является акустико-корреляционный способ, основанный на регистрации и анализе шумов, возникающих при порыве трубы и появлении утечки воды.

Классический процесс корреляции шума построен на принципе регистрации акустических волн электроакустическими преобразователями (сейсмографами) с двух точек по краям диагностируемого участка трубопровода (см. http://ru.wikipedia.org/wiki/Поиск_утечек_…; Научно-технический журнал «MEGATECH» №1, 2011 г.). Далее с помощью корреляционного процессора происходит идентификация полученных сигналов, определение величины временной десинхронизации корреляционных пиков, по имеющимся данным о длине участка и скорости акустической волны вычисление координаты места порыва. Так как кроме точки порыва протекающая вода производит излучение акустических волн по всей длине трубопровода, то чем дальше расстояние от точки порыва до сейсмографов, тем больше влияние шума протекающей в трубопроводе воды. Кроме того, существуют и другие звуковые источники, создающие шумовой фон. При разных условиях диагностирования существует свой предел, при котором доминирующими начинают становиться шумы не от порыва, а от протока воды, исходящие в том числе и из-за пределов диагностируемого участка. Исходя из вышеописанного, чем меньше уровень посторонних шумов, тем шире пределы условий диагностирования.

Технической задачей изобретения является разработка способа обнаружения места порыва трубопровода, позволяющего повысить качество диагностики.

Техническим результатом использования изобретения является то, что за счет применения предлагаемого способа предварительной обработки происходит выделение шума, излучаемого порывом трубопровода из общего акустического фона, что позволяет увеличить длину диагностируемого участка трубопровода или уменьшить минимальный шумовой порог утечки.

Предложенный способ заключается в приеме акустических сигналов с четырех точек по длине трубопровода и их предварительной, а затем основной обработке.

Способ определения мест порывов трубопровода состоит в том, что по краям исследуемого участка трубопровода устанавливают приборы для регистрации звука и производят обработку звуковых сигналов. Для улучшения качества диагностики на обе крайние точки исследуемого участка трубопровода устанавливают парно по два сейсмографа с определенным фиксированным интервалом (500 мм). Акустические волны от порыва, проходя по трубопроводу в обе стороны, достигают сначала ближних к диагностируемому участку сейсмографов, потом дальних сейсмографов. Для выделения волн, исходящих от порыва со стороны исследуемого участка, и гашения фоновых шумов необходимо придать временную задержку сигналу с ближних к исследуемому участку сейсмографов на время опережения относительно дальних сейсмографов, которое рассчитывают по следующей формуле:

t - временная задержка сигнала с ближнего сейсмографа;

v - скорость акустической волны в трубопроводе;

L - расстояние между парными сейсмографами.

При данной временной задержке фазы сигналов акустических волн, исходящих со стороны исследуемого участка, совпадут, а исходящих с противоположной стороны будут находиться в противофазе. Далее производят сложение двух сигналов в один, что позволяет увеличить исследуемые и погасить посторонние шумы. Полученные два сигнала обрабатывают с помощью корреляционного течеискателя.

Для пояснения способа на фиг. изображена схема расположения сейсмографов.

Способ получения и предварительной обработки сигнала шума от порыва трубопровода для проведения акустико-корреляционной диагностики осуществляют следующим образом.

Для осуществления способа необходимо следующее оборудование: 4 сейсмографа 1, 2, 3, 4, два блока задержки сигнала 5, 6, два смесителя сигнала 7, 8 и корреляционный течеискатель 9.

Сейсмографы 1, 2 и 3, 4 устанавливают парно по краям исследуемого участка трубопровода с интервалом 500 мм, регистрируют звуковой сигнал и производят его предварительную подготовку.

Технологией подготовки является синхронизация фаз сигнала акустической волны выбранного вектора, полученной с 2 парно установленных на трубопровод сейсмографов 1, 2, 3, 4, с помощью блока задержки сигнала 5, 6 и их последующего сложения. Для чего в блоке задержки сигнала 5, 6 придают временную задержку сигнала с ближних к исследуемому участку сейсмографов 1, 3 на время опережения относительно дальних сейсмографов 2, 4, которое рассчитывают по следующей формуле:

t - временная задержка сигнала с ближнего сейсмографа;

v - скорость акустической волны в трубопроводе;

L - расстояние между парными сейсмографами.

При данной временной задержке фазы сигналов акустических волн, исходящих со стороны исследуемого участка, совпадут, а исходящих с противоположной стороны будут находиться в противофазе. Далее, с помощью смесителя сигналов 7, 8 производят сложение двух сигналов в один, что позволяет увеличить исследуемые и погасить посторонние шумы. Полученные, с каждого края диагностируемого участка трубопровода, два подготовленных сигнала обрабатывают с помощью корреляционного течеискателя 9.

Способ получения и предварительной обработки сигнала шума порыва трубопровода для проведения акустико-корреляционной диагностики, при котором по краям исследуемого участка трубопровода устанавливают приборы для регистрации звука и производят его обработку, отличающийся тем, что на обе крайние точки исследуемого участка трубопровода устанавливают парно по два сейсмографа с фиксированным интервалом, затем придают временную задержку сигналу, полученному с ближних к исследуемому участку сейсмографов на время опережения относительно дальних сейсмографов, которое рассчитывают по следующей формуле:
t=L/v,
где t - временная задержка сигнала с ближнего сейсмографа;
v - скорость акустической волны в трубопроводе;
L - расстояние между парными сейсмографами,
затем с помощью смесителя производят сложение двух сигналов с парных сейсмографов в один и с помощью корреляционного течеискателя обработку двух полученных с каждого края диагностируемого участка трубопровода сигналов.



 

Похожие патенты:

Изобретение относится к нефтегазовой промышленности и может быть использовано для дистанционного контроля газо- и нефтепроводов, проходящих по оползневым участкам трассы.

Изобретение относится к области электротехнического оборудования и используется в электрических аппаратах, трансформаторах и других устройствах высокого напряжения.

Изобретение относится к области измерительной техники и может быть использовано для вибрационного контроля, защиты и диагностики технологического оборудования. .

Изобретение относится к области трубопроводного транспорта и предназначено для диагностики трубопроводов. .

Изобретение относится к области неразрушающего контроля неповоротных цилиндрических деталей, в частности трубопроводов, и направлено на упрощение конструкции устройства, увеличение скорости сканирования при сохранении точности и надежности контроля, что обеспечивается за счет того, что устройство содержит блок контрольно-измерительной аппаратуры, дистанционного управления и обмена данными и механизм перемещения по винтовой траектории, обеспечивающий возможность изменения направления движения.

Изобретение относится к области энергетики, в частности к устройствам обнаружения разрыва труб пароводяного тракта котлов. .

Изобретение относится к контрольно-измерительной технике и предназначено для диагностики преимущественно подводных магистральных трубопроводов. .

Изобретение относится к контрольно-измерительной технике и предназначено для дистанционного определения места утечки жидкости или газа из магистрального трубопровода, находящегося в траншее под грунтом.

Изобретение относится к контрольно-измерительной технике и предназначено для диагностики преимущественно подводных магистральных трубопроводов. .

Изобретение относится к устройствам обнаружения течи в подземных трубопроводах тепловых сетей

Изобретение относится к технике контроля трубопроводных систем и может быть использовано для обнаружения мест порывов в трубопроводах

Изобретение относится к области транспортировки нефти и касается вопросов контроля состояния подводных нефтепроводов, а более конкретно к обнаружению утечек при их разгерметизации. Способ включает измерения оптических и гидрологических характеристик морской среды с помощью флюориметра и акустического доплеровского профилографа течений, размещенных на подводном аппарате, на основе которых определяют наличие нефтехимических примесей в воде. Одновременно проводят измерения акустических характеристик донных осадков вблизи нефтепровода и в результате обработки полученных данных определяют наличие нетипичных для данной акватории видов осадков. В случае обнаружения таких осадков выполняют маневрирование подводного аппарата и проводят флюориметром контрольные измерения содержания нефтехимических примесей в придонном слое в месте расположения нефтепровода. Техническим результатом является возможность повысить надежность обнаружения слабоинтенсивных утечек, развивающихся в придонном слое. 1 ил.

Изобретение относится к области испытательно-измерительной техники и направлено на упрощение определения расстояния до места течи подземного трубопровода, что обеспечивается за счет того, что с помощью акустического датчика измеряют амплитуду звука течи в двух точках подземного трубопровода. Затем искусственно возбуждают звуковые колебания и измеряют амплитуду звуковых колебаний от совместного действия генератора звука и звука течи в тех же точках подземного трубопровода. По величине амплитуд звука в двух точках подземного трубопровода и измеренному расстоянию между точками измерения определяют расстояние до места течи по формуле, определенной согласно изобретению. 2 н. и 3 з.п. ф-лы, 3 ил.

Изобретение относится к области диагностики линейной части трубопроводных систем и может быть использовано для диагностики технического состояния внутренней стенки магистральных трубопроводов. Размещают на внешней поверхности трубопровода возбуждающие и измерительную катушки, генерируют гармонический испытательный сигнал и передают его в возбуждающие катушки, усиливают напряжение, наводимое в измерительной катушке, и определяют по комплексной амплитуде толщину стенки трубопровода. Периодически осуществляют измерение толщины стенки трубопровода, полученные значения сравнивают с ранее накопленными и полученными в результате моделирования. В результате регрессионной обработки осуществляют прогнозирование времени истончения трубопровода до предельного значения и осуществляют контроль изменений условий наблюдения и корректировку измеренных параметров. Устройство содержит возбуждающий генератор, блок измерительных преобразователей, включающий возбуждающие и измерительную катушки, и усилитель. Устройство снабжено полосовым фильтром, цифровым датчиком температуры, расположенным в непосредственной близости от любой из катушек возбуждения на поверхности трубопровода, цифровым вычислителем, состоящим из центрального процессора, оперативного и постоянного запоминающих устройств, аналого-цифрового преобразователя и порта ввода-вывода. Техническим результатом является повышение безопасности эксплуатации магистрального трубопровода. 2 н.п. ф-лы, 2 ил.

Изобретение относится к неразрушающему контролю магистральных трубопроводов. В диагностируемый магистральный нефтепровод помещают внутритрубный снаряд-одометр, снабженный источником изотропного акустического излучения, линейкой приемников гидрофонов и бортовым микрокомпьютером. С помощью изотропного акустического источника излучают акустическую волну с частотой и амплитудой, задаваемыми бортовым микрокомпьютером, при этом с помощью линейки гидрофонов и микрокомпьютера непрерывно регистрируют поле давления на оси z нефтепровода относительно источника изотропного акустического излучения. По результатам этих измерений диагностируют изменение местоположения первого интерференционного минимума давления относительно источника изотропного акустического излучения. После чего привязывают эти данные к координатам по оси z относительно точки ввода снаряда-одометра внутрь нефтепровода и на основе полученных данных судят о целостности грунта, окружающего нефтепровод. Способ позволяет осуществить раннюю диагностику нарушения целостности грунта вокруг магистрального нефтепровода и предотвратить процесс его разрушения. 4 ил.

Изобретение относится к трубопроводному транспорту и может быть использовано для обнаружения негерметичности стенки трубы линейного участка магистрального трубопровода. В качестве передающего канала информации используют как металл стенки трубы, так и среду, заполняющую трубу. Регистрируют вибрации металла трубы, а также импульс избыточного давления, возникающий при появлении негерметичности стенки трубы, и следующее за ними возникновение в составе спектра акустических шумов дополнительной высокочастотной компоненты. По разности времени прихода упругих акустических волн, распространяющихся по металлу трубы и по среде к датчикам давления и вибрации, получают сведения о местонахождении негерметичности. По амплитудному уровню высокочастотной компоненты получают сведения о ее размерах и степени опасности. Техническим результатом изобретения является повышение надежности работы линейной части магистрального трубопровода за счет оперативного и достоверного обнаружения его негерметичности. 2 ил.

Изобретение относится к области эксплуатации трубопроводов, в частности теплотрасс, и может быть использовано для обнаружения мест протечек теплотрасс. Технический результат - повышение точности контроля состояние изоляции трубопровода. Способ определения места протечки теплотрассы включает размещение на контролируемом участке теплотрассы в покрывающей трубопровод теплоизоляции с диэлектрическими свойствами по меньшей мере одной линии токопроводящего сигнального проводника. На концах проводника устанавливают устройства контроля электрического сопротивления. По меньшей мере на одной линии токопроводящего сигнального проводника последовательно через заданные расстояния устанавливают резисторы, имеющие равные значения электрического сопротивления, превышающие значение сопротивления теплоизоляции при намокании. Расстояние до места протечки от устройства для контроля электрического сопротивления определяют путем деления измеренного общего электрического сопротивления токопроводящего сигнального проводника на величину электрического сопротивления одного резистора и умножения полученного результата на расстояние между резисторами. 2 ил.

Изобретение относится к области обеспечения промышленной безопасности опасных производственных объектов. Способ заключается в том, что вначале определяют точное местоположение оси трубопровода с помощью трассопоискового комплекса, затем определяют местоположение нарушений изоляционного покрытия трубопровода, размещая попарно четыре медносульфатных электрода сравнения на грунте. Приближаясь к дефекту изоляционного покрытия, наблюдают на измерительном приборе за пульсирующими значениями градиента напряжения постоянного тока и потенциалов «труба-земля», синхронными с тактом прерывателя постоянного тока, по которым определяют местоположение эпицентра дефекта изоляционного покрытия, в котором продольный градиент напряжения равен нулю, а поперечный градиент напряжения принимает максимальное значение, после этого проводят измерения сопротивления грунта вдоль подземного трубопровода, исследование подземного трубопровода методом магнитной томографии и в завершение по данным наземного обследования в наиболее опасных зонах проводят контрольное шурфование и по полученным результатам определяют комплексный показатель технического состояния трубопровода p, на основе которого принимается решение об условиях дальнейшей эксплуатации трубопровода. Технический результат - повышение точности определения местонахождения и размеров повреждения изоляционного покрытия, оценки состояния металла трубы подземного трубопровода. 2 ил.
Наверх